Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Gastroenterol ; 18(1): 93, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929472

RESUMO

BACKGROUND: Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS: In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS: Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS: These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.


Assuntos
Gastroenterite/complicações , Gastroenterite/microbiologia , Microbioma Gastrointestinal , Desnutrição/complicações , Desnutrição/microbiologia , Infecções por Rotavirus/complicações , Infecções por Rotavirus/microbiologia , Animais , Diarreia/microbiologia , Diarreia/virologia , Suscetibilidade a Doenças , Fezes/microbiologia , Gastroenterite/virologia , Humanos , Lactente , Intestinos/microbiologia , Desnutrição/virologia , RNA Ribossômico 16S , Infecções por Rotavirus/virologia , Análise de Sequência de RNA , Suínos , Eliminação de Partículas Virais , Aumento de Peso
2.
J Immunol ; 196(4): 1780-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800875

RESUMO

Rotavirus (RV) causes significant morbidity and mortality in children worldwide. The intestinal microbiota plays an important role in modulating host-pathogen interactions, but little is known about the impact of commonly used probiotics on human RV (HRV) infection. In this study, we compared the immunomodulatory effects of Gram-positive (Lactobacillus rhamnosus strain GG [LGG]) and Gram-negative (Escherichia coli Nissle [EcN]) probiotic bacteria on virulent human rotavirus (VirHRV) infection and immunity using neonatal gnotobiotic piglets. Gnotobiotic piglets were colonized with EcN, LGG, or EcN+LGG or uncolonized and challenged with VirHRV. Mean peak virus shedding titers and mean cumulative fecal scores were significantly lower in EcN-colonized compared with LGG-colonized or uncolonized piglets. Reduced viral shedding titers were correlated with significantly reduced small intestinal HRV IgA Ab responses in EcN-colonized compared with uncolonized piglets post-VirHRV challenge. However the total IgA levels post-VirHRV challenge in the intestine and pre-VirHRV challenge in serum were significantly higher in EcN-colonized than in LGG-colonized piglets. In vitro treatment of mononuclear cells with these probiotics demonstrated that EcN, but not LGG, induced IL-6, IL-10, and IgA, with the latter partially dependent on IL-10. However, addition of exogenous recombinant porcine IL-10 + IL-6 to mononuclear cells cocultured with LGG significantly enhanced IgA responses. The greater effectiveness of EcN in moderating HRV infection may also be explained by the binding of EcN but not LGG to Wa HRV particles or HRV 2/4/6 virus-like particles but not 2/6 virus-like particles. Results suggest that EcN and LGG differentially modulate RV infection and B cell responses.


Assuntos
Escherichia coli/imunologia , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Lacticaseibacillus rhamnosus/imunologia , Infecções por Rotavirus/microbiologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Escherichia coli/metabolismo , Citometria de Fluxo , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/farmacologia , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Suínos
3.
Eur J Immunol ; 46(10): 2426-2437, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27457183

RESUMO

Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.


Assuntos
Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Lacticaseibacillus rhamnosus/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica , Células Dendríticas/virologia , Vida Livre de Germes , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Probióticos , Suínos
4.
J Virol ; 90(1): 142-51, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468523

RESUMO

UNLABELLED: The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE: The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines.


Assuntos
Proteção Cruzada , Genótipo , Rotavirus/imunologia , Rotavirus/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Células Dendríticas/virologia , Genoma Viral , Vida Livre de Germes , Humanos , RNA Viral , Reto/virologia , Rotavirus/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Suínos , Viremia , Replicação Viral , Eliminação de Partículas Virais
5.
J Immunol ; 191(5): 2446-56, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918983

RESUMO

Rotaviruses (RVs) are a leading cause of childhood diarrhea. Current oral vaccines are not effective in impoverished countries where the vaccine is needed most. Therefore, alternative affordable strategies are urgently needed. Probiotics can alleviate diarrhea in children and enhance specific systemic and mucosal Ab responses, but the T cell responses are undefined. In this study, we elucidated the T cell and cytokine responses to attenuated human RV (AttHRV) and virulent human RV (HRV) in gnotobiotic pigs colonized with probiotics (Lactobacillus rhamnosus strain GG [LGG] and Bifidobacterium lactis Bb12 [Bb12]), mimicking gut commensals in breastfed infants. Neonatal gnotobiotic pigs are the only animal model susceptible to HRV diarrhea. Probiotic colonized and nonvaccinated (Probiotic) pigs had lower diarrhea and reduced virus shedding postchallenge compared with noncolonized and nonvaccinated pigs (Control). Higher protection in the Probiotic group coincided with higher ileal T regulatory cells (Tregs) before and after challenge, and higher serum TGF-ß and lower serum and biliary proinflammatory cytokines postchallenge. Probiotic colonization in vaccinated pigs enhanced innate serum IFN-α, splenic and circulatory IFN-γ-producing T cells, and serum Th1 cytokines, but reduced serum Th2 cytokines compared with noncolonized vaccinated pigs (Vac). Thus, LGG+Bb12 induced systemic Th1 immunostimulatory effects on oral AttHRV vaccine that coincided with lower diarrhea severity and reduced virus shedding postchallenge in Vac+Pro compared with Vac pigs. Previously unreported intestinal CD8 Tregs were induced in vaccinated groups postchallenge. Thus, probiotics LGG+Bb12 exert divergent immunomodulating effects, with enhanced Th1 responses to oral AttHRV vaccine, whereas inducing Treg responses to virulent HRV.


Assuntos
Imunomodulação/imunologia , Probióticos/farmacocinética , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Administração Oral , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Citometria de Fluxo , Vida Livre de Germes , Humanos , Ativação Linfocitária/imunologia , Infecções por Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Suínos , Linfócitos T/imunologia
6.
J Immunol ; 190(9): 4742-53, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23536630

RESUMO

We examined how prenatally acquired vitamin A deficiency (VAD) modulates innate immune responses and human rotavirus (HRV) vaccine efficacy in a gnotobiotic (Gn) piglet model of HRV diarrhea. The VAD and vitamin A-sufficient (VAS) Gn pigs were vaccinated with attenuated HRV (AttHRV) with or without concurrent oral vitamin A supplementation (100,000 IU) and challenged with virulent HRV (VirHRV). Regardless of vaccination status, the numbers of conventional and plasmacytoid dendritic cells (cDCs and pDCs) were higher in VAD piglets prechallenge, but decreased substantially postchallenge as compared with VAS pigs. We observed significantly higher frequency of CD103 (integrin αEß7) expressing DCs in VAS versus VAD piglets postchallenge, indicating that VAD may interfere with homing (including intestinal) phenotype acquisition. Post-VirHRV challenge, we observed longer and more pronounced diarrhea and higher VirHRV fecal titers in nonvaccinated VAD piglets. Consistent with higher VirHRV shedding titers, higher IFN-α levels were induced in control VAD versus VAS piglet sera at postchallenge day 2. Ex vivo HRV-stimulated mononuclear cells (MNCs) isolated from spleen and blood of VAD pigs prechallenge also produced more IFN-α. In contrast, at postchallenge day 10, we observed reduced IFN-α levels in VAD pigs that coincided with decreased TLR3(+) MNC frequencies. Numbers of necrotic MNCs were higher in VAD pigs in spleen (coincident with splenomegaly in other VAD animals) prechallenge and intestinal tissues (coincident with higher VirHRV induced intestinal damage) postchallenge. Thus, prenatal VAD caused an imbalance in innate immune responses and exacerbated VirHRV infection, whereas vitamin A supplementation failed to compensate for these VAD effects.


Assuntos
Vida Livre de Germes/imunologia , Imunidade Inata/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Deficiência de Vitamina A/congênito , Deficiência de Vitamina A/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apoptose/imunologia , Diarreia/imunologia , Diarreia/metabolismo , Diarreia/virologia , Modelos Animais de Doenças , Feminino , Humanos , Cadeias alfa de Integrinas/imunologia , Cadeias alfa de Integrinas/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/virologia , Fígado/imunologia , Fígado/metabolismo , Fígado/virologia , Gravidez , Receptores do Ácido Retinoico/imunologia , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Proteínas Plasmáticas de Ligação ao Retinol/imunologia , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Infecções por Rotavirus/metabolismo , Infecções por Rotavirus/virologia , Baço/imunologia , Baço/metabolismo , Baço/virologia , Suínos , Deficiência de Vitamina A/metabolismo
7.
Vet Immunol Immunopathol ; 128(4): 413-7, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19136155

RESUMO

Granulysin (GNLY)/NK-lysin (NKL) is an effector antimicrobial cationic peptide expressed in the cytotoxic and natural killer lymphocytes. We report here cDNA sequence (405bp) encoding the complete functional domain of buffalo-lysin (bu-lysin), and its expression profile in the various tissues. The nucleotide sequence of bu-lysin exhibited >85% identity with the bovine lysin. Comparison of the deduced amino acid sequence of bu-lysin with those of GNLY/NKL of different species revealed the conservation of six cysteine (Cys) residues and five alpha helices. Unlike the homologues in other species, bu-lysin composed of 11 positively charged Lys residues as in equine. The expression of bu-lysin mRNA in the in vitro cultured lymphocytes was inducible and increased markedly (p<0.05) in a dose dependant manner when incubated with Concanavalin A (ConA). The expression of bu-lysin mRNA in the different tissues was variable: comparatively higher in the spleen and lymph node, moderate in the uterine endometrium and low in the liver and kidney. These results indicate the existence and active expression of GNLY/NKL homologue in water buffalo having a significant influence in immune response.


Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , Búfalos/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Sequência de Bases , Búfalos/genética , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência
8.
Virus Res ; 267: 21-25, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31054932

RESUMO

Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. It is unclear which arm of the immune system regulates resistance to HuNoV infection. Thus, we studied the pathogenesis of human norovirus (HuNoV) in T-B-NK+ Severe Combined Immunodeficiency (SCID) gnotobiotic pigs to investigate the role of innate (especially, natural killer (NK) cells) immunity in HuNoV infection. Forty SCID and non-SCID pigs were randomly grouped: 1) SCID+HuNoV (n = 12); 2) non-SCID+HuNoV (n = 14); 3) SCID mock-inoculated (n = 6); and 4) non-SCID mock-inoculated (n = 8). Pigs (8-14-day-old) were inoculated orally with GII.4 HuNoV strain HS292 (mean 9.1 log10 genomic equivalents/pig) or mock. Daily fecal consistency and fecal viral RNA shedding, and histopathology (at euthanasia) were evaluated. Frequencies of blood and ileal T, B, and NK cells were analyzed by flow cytometry, and a NK cell cytotoxicity assay was performed at post-inoculation day (PID) 8. Unlike the increased infectivity of HuNoV observed previously in T-B-NK- SCID pigs (Lei et al., 2016. Sci. Rep. 6, 25,222), there was no significant difference in frequency of pigs with diarrhea and diarrhea days between T-B-NK+ SCID+HuNoV and non-SCID+HuNoV groups. Cumulative fecal HuNoV RNA shedding at PIDs 1-8, PIDs 9-27, and PIDs 1-27 also did not differ statistically. These observations coincided with the presence of NK cells and NK cell cytotoxicity in the ileum and blood of the SCID pigs. Based on our observations, innate immunity, including NK cell activity, may be critical to mediate or reduce HuNoV infection in T-B-NK+ SCID pigs, and potentially in immunocompetent patients.


Assuntos
Infecções por Caliciviridae/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Norovirus/imunologia , Imunodeficiência Combinada Severa/virologia , Animais , Infecções por Caliciviridae/virologia , Diarreia/virologia , Fezes/virologia , Vida Livre de Germes , Humanos , Norovirus/patogenicidade , Suínos , Eliminação de Partículas Virais
9.
Vaccine ; 36(42): 6270-6281, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30219368

RESUMO

BACKGROUND: Low efficacy of rotavirus (RV) vaccines in developing African and Asian countries, where malnutrition is prevalent, remains a major concern and a challenge for global health. METHODS: To understand the effects of protein malnutrition on RV vaccine efficacy, we elucidated the innate, T cell and cytokine immune responses to attenuated human RV (AttHRV) vaccine and virulent human RV (VirHRV) challenge in germ-free (GF) pigs or human infant fecal microbiota (HIFM) transplanted gnotobiotic (Gn) pigs fed protein-deficient or -sufficient bovine milk diets. We also analyzed serum levels of tryptophan (TRP), a predictor of malnutrition, and kynurenine (KYN). RESULTS: Protein-deficient pigs vaccinated with oral AttHRV vaccine had lower protection rates against diarrhea post-VirHRV challenge and significantly increased fecal virus shedding titers (HIFM transplanted but not GF pigs) compared with their protein-sufficient counterparts. Reduced vaccine efficacy in protein-deficient pigs coincided with altered serum IFN-α, TNF-α, IL-12 and IFN-γ responses to oral AttHRV vaccine and the suppression of multiple innate immune parameters and HRV-specific IFN-γ producing T cells post-challenge. In protein-deficient HIFM transplanted pigs, decreased serum KYN, but not TRP levels were observed throughout the experiment, suggesting an association between the altered TRP metabolism and immune responses. CONCLUSION: Collectively, our findings confirm the negative effects of protein deficiency, which were exacerbated in the HIFM transplanted pigs, on innate, T cell and cytokine immune responses to HRV and on vaccine efficacy, as well as on TRP-KYN metabolism.


Assuntos
Fezes/microbiologia , Vida Livre de Germes , Deficiência de Proteína/complicações , Vacinas Atenuadas/uso terapêutico , Animais , Humanos , Lactente , Microbiota/imunologia , Deficiência de Proteína/imunologia , Deficiência de Proteína/metabolismo , Rotavirus/imunologia , Rotavirus/patogenicidade , Vacinas contra Rotavirus/uso terapêutico , Suínos , Triptofano/metabolismo
10.
Front Immunol ; 8: 334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396664

RESUMO

The role of intestinal microbiota and probiotics in prevention and treatment of infectious diseases, including diarrheal diseases in children and animal models, is increasingly recognized. Intestinal commensals play a major role in development of the immune system in neonates and in shaping host immune responses to pathogens. Lactobacilli spp. and Escherichia coli Nissle 1917 are two probiotics that are commonly used in children to treat various medical conditions including human rotavirus diarrhea and inflammatory bowel disease. Although the health benefits of probiotics have been confirmed, the specific effects of these established Gram-positive (G+) and Gram-negative (G-) probiotics in modulating immunity against pathogens and disease are largely undefined. In this review, we discuss the differences between G+ and G- probiotics/commensals in modulating the dynamics of selected infectious diseases and host immunity. These probiotics modulate the pathogenesis of infectious diseases and protective immunity against pathogens in a species- and strain-specific manner. Collectively, it appears that the selected G- probiotic is more effective than the various tested G+ probiotics in enhancing protective immunity against rotavirus in the gnotobiotic piglet model.

11.
mSphere ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261667

RESUMO

Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children.

12.
Clin Vaccine Immunol ; 24(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28637803

RESUMO

Malnutrition leads to increased morbidity and is evident in almost half of all deaths in children under the age of 5 years. Mortality due to rotavirus diarrhea is common in developing countries where malnutrition is prevalent; however, the relationship between malnutrition and rotavirus infection remains unclear. In this study, gnotobiotic pigs transplanted with the fecal microbiota of a healthy 2-month-old infant were fed protein-sufficient or -deficient diets and infected with virulent human rotavirus (HRV). After human rotavirus infection, protein-deficient pigs had decreased human rotavirus antibody titers and total IgA concentrations, systemic T helper (CD3+ CD4+) and cytotoxic T (CD3+ CD8+) lymphocyte frequencies, and serum tryptophan and angiotensin I-converting enzyme 2. Additionally, deficient-diet pigs had impaired tryptophan catabolism postinfection compared with sufficient-diet pigs. Tryptophan supplementation was tested as an intervention in additional groups of fecal microbiota-transplanted, rotavirus-infected, sufficient- and deficient-diet pigs. Tryptophan supplementation increased the frequencies of regulatory (CD4+ or CD8+ CD25+ FoxP3+) T cells in pigs on both the sufficient and the deficient diets. These results suggest that a protein-deficient diet impairs activation of the adaptive immune response following HRV infection and alters tryptophan homeostasis.


Assuntos
Imunidade Adaptativa , Peptidil Dipeptidase A/metabolismo , Deficiência de Proteína/complicações , Infecções por Rotavirus/complicações , Triptofano/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Linfócitos B/imunologia , Diarreia/virologia , Transplante de Microbiota Fecal , Vida Livre de Germes , Homeostase , Humanos , Imunoglobulina A/imunologia , Lactente , Microbiota , Peptidil Dipeptidase A/sangue , Rotavirus/imunologia , Rotavirus/isolamento & purificação , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/metabolismo , Sus scrofa , Linfócitos T/imunologia , Triptofano/sangue
13.
Vet Immunol Immunopathol ; 172: 72-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26809484

RESUMO

Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates.


Assuntos
Bifidobacterium/imunologia , Lactobacillus/imunologia , Probióticos/uso terapêutico , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Animais , Humanos , Infecções por Rotavirus/imunologia , Especificidade da Espécie
14.
Vet Immunol Immunopathol ; 171: 7-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26964712

RESUMO

Toll-like receptors (TLRs), key initiators of innate immune responses, recognize antigens and are essential in linking innate and adaptive immune responses. Misrecognition and over-stimulation/expression of TLRs may contribute to the development of chronic inflammatory diseases and autoimmune diseases. However, appropriate and mature TLR responses are associated with the establishment of resistance against some infectious diseases. In this study, we assessed the mRNA expression profile of TLRs 1-10 in splenic and ileal mononuclear cells (MNCs) and dendritic cells (DCs) of germ-free (GF) and conventional pigs at different ages. We found that the TLR mRNA expression profiles were distinct between GF and conventional pigs. The expression profiles were also significantly different between splenic and ileal MNCs/DCs. Comparison of the TLR expression profiles in GF and conventional newborn and young pigs demonstrated that exposure to commensal microbiota may play a more important role than age in TLR mRNA expression profiles. To our knowledge, this is the first report that systematically assesses porcine TLRs 1-10 mRNA expression profiles in MNCs and DCs from GF and conventional pigs at different ages. These results further highlighted that the commensal microbiota of neonates play a critical role through TLR signaling in the development of systemic and mucosal immune systems.


Assuntos
Envelhecimento/metabolismo , Receptores Toll-Like/metabolismo , Envelhecimento/genética , Animais , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Vida Livre de Germes/genética , Íleo/citologia , Íleo/metabolismo , Leucócitos Mononucleares/metabolismo , Microbiota/imunologia , RNA Mensageiro/metabolismo , Baço/citologia , Baço/metabolismo , Suínos , Receptores Toll-Like/genética
15.
PLoS One ; 11(11): e0166038, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824918

RESUMO

Live-attenuated oral rotavirus (RV) vaccines have lower efficacy in low income countries, and additionally are associated with a rare but severe adverse event, intussusception. We have been pursuing the development of an inactivated rotavirus vaccine (IRV) using the human rotavirus strain CDC-9 (G1P[8]) through parenteral immunization and previously demonstrated dose sparing and enhanced immunogenicity of intradermal (ID) unadjuvanted IRV using a coated microneedle patch in comparison with intramuscular (IM) administration in mice. The aim of this study was to evaluate the immune response and protection against RV infection and diarrhea conferred by the administration of the ID unadjuvanted IRV using the microneedle device MicronJet600® in neonatal gnotobiotic (Gn) piglets challenged with virulent Wa G1P[8] human RV. Three doses of 5 µg IRV when administered intradermally and 5 µg IRV formulated with aluminum hydroxide [Al(OH)3] when administered intramuscularly induced comparable rotavirus-specific antibody titers of IgA, IgG, IgG avidity index and neutralizing activity in sera of neonatal piglets. Both IRV vaccination regimens protected against RV antigen shedding in stools, and reduced the cumulative diarrhea scores in the piglets. This study demonstrated that the ID and IM administrations of IRV are immunogenic and protective against RV-induced diarrhea in neonatal piglets. Our findings highlight the potential value of an adjuvant sparing effect of the IRV ID delivery route.


Assuntos
Vida Livre de Germes/imunologia , Infecções por Rotavirus/veterinária , Vacinas contra Rotavirus/uso terapêutico , Rotavirus/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Animais Recém-Nascidos/imunologia , Anticorpos Antivirais/imunologia , Injeções Intradérmicas/veterinária , Microinjeções/métodos , Microinjeções/veterinária , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
16.
Gut Pathog ; 8: 66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999620

RESUMO

We evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) and the antibiotic Ciprofloxacin (Cipro) on mRNA expression of intestinal epithelial cells (IEC) in gnotobiotic (Gn) piglets colonized with a defined commensal microflora (DMF) and inoculated with human rotavirus (HRV) that infects IECs. We analyzed mRNA levels of IEC genes for enteroendocrine cells [chromogranin A (CgA)], goblet cells [mucin 2 (MUC2)], transient amplifying progenitor cell [proliferating cell nuclear antigen (PCNA)], intestinal epithelial stem cell (SOX9) and enterocytes (villin). Cipro treatment enhanced HRV diarrhea and decreased the mRNA levels of MUC2 and villin but increased PCNA. These results suggest that Cipro alters the epithelial barrier, potentially decreasing the numbers of mature enterocytes (villin) and goblet cells secreting protective mucin (MUC2). These alterations may induce increased IEC proliferation (PCNA expression) to restore the integrity of the epithelial layer. Coincidental with decreased diarrhea severity in EcN treated groups, the expression of CgA and villin was increased, while SOX9 expression was decreased representing higher epithelial integrity indicative of inhibition of cellular proliferation. Thus, EcN protects the intestinal epithelium from damage by increasing the gene expression of enterocytes and enteroendocrine cells, maintaining the absorptive function and, consequently, decreasing the severity of diarrhea in HRV infection.

17.
Vaccine ; 32(7): 816-24, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24380684

RESUMO

Vitamin A deficiency (VAD) is associated with increased childhood mortality and morbidity in impoverished Asian and African countries, but the impact of VAD on rotavirus (RV) vaccine or infection is poorly understood. We assessed effects of gestational and dietary induced pre- and post-natal VAD and vitamin A supplementation on immune responses to a pentavalent rotavirus vaccine, RotaTeq(®) in a neonatal gnotobiotic pig model. Vaccine efficacy was assessed against virulent G1P[8] human rotavirus (HRV) challenge. VAD and vitamin A sufficient (VAS) piglets were derived from dietary VAD and VAS sows, respectively. VAD piglets had significantly lower levels of hepatic vitamin A compared to that of VAS piglets. RotaTeq(®)-vaccinated VAD piglets had 350-fold higher fecal virus shedding titers compared to vaccinated VAS piglets post-challenge. Only 25% of vaccinated non-vitamin A supplemented VAD piglets were protected against diarrhea compared with 100% protection rate in vaccinated non-supplemented VAS piglets post-challenge. Intestinal HRV specific immune responses were compromised in VAD piglets. Vaccinated VAD piglets had significantly lower ileal HRV IgG antibody secreting cell (ASC) responses (pre-challenge) and duodenal HRV IgA ASC responses (post-challenge) compared to vaccinated VAS piglets. Also, intestinal HRV IgA antibody titers were 11-fold lower in vaccinated VAD compared to vaccinated VAS piglets post-challenge. Persistently elevated levels of IL-8, a pro-inflammatory mediator, and lower IL-10 responses (anti-inflammatory) in vaccinated VAD compared to VAS piglets suggest more severe inflammatory responses in VAD piglets post-challenge. Moreover higher IFN-γ responses pre-challenge were observed in VAD compared to VAS piglets. The impaired vaccine-specific intestinal antibody responses and decreased immunoregulatory cytokine responses coincided with reduced protective efficacy of the RV vaccine against virulent HRV challenge in VAD piglets. In conclusion, VAD impaired antibody responses to RotaTeq(®) and vaccine efficacy. Oral supplementation of 100,000 IU vitamin A concurrent with RV vaccine failed to increase the vaccine efficacy in VAD piglets.


Assuntos
Imunidade Adaptativa , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Deficiência de Vitamina A/complicações , Animais , Animais Recém-Nascidos/imunologia , Anticorpos Antivirais/imunologia , Diarreia/prevenção & controle , Diarreia/virologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Vida Livre de Germes , Imunoglobulina A/imunologia , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-8/imunologia , Intestinos/imunologia , Infecções por Rotavirus/imunologia , Suínos , Vacinas Atenuadas/imunologia , Vitamina A/administração & dosagem , Deficiência de Vitamina A/imunologia
18.
Gut Microbes ; 5(5): 639-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483333

RESUMO

B cells play a key role in generation of protective immunity against rotavirus infection, a major cause of gastroenteritis in children. Current RV vaccines are less effective in developing countries compared to developed countries. Commensals/probiotics influence mucosal immunity, but the role of early gut colonizing bacteria in modulating intestinal B cell responses to RV vaccines is largely unknown. We co-colonized neonatal gnotobiotic pigs, the only animal model susceptible to HRV diarrhea, with 2 dominant bacterial species present in the gut of breastfed infants, Lactobacillus rhamnosus strain GG and Bifidobacterium animalis lactis Bb12 to evaluate their impact on B cell responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine. Following HRV challenge, probiotic-colonized, AttHRV vaccinated piglets had significantly lower fecal scores and reduced HRV shedding titers compared to uncolonized, AttHRV vaccinated pigs. The reduction in HRV diarrhea was significantly correlated with higher intestinal IgA HRV antibody titers and intestinal HRV-specific IgA antibody secreting cell (ASC) numbers in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs. The significantly higher small intestinal HRV IgA antibody responses coincided with higher IL-6, IL-10 and APRIL responses of ileal mononuclear cells (MNCs) and the immunomodulatory effects of probiotics genomic DNA on TGF-ß and IL-10 responses. However, serum RV IgG antibody titers and total IgG titers were significantly lower in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs, both pre- and post-challenge. In summary, LGG and Bb12 beneficially modulated intestinal B cell responses to HRV vaccine.


Assuntos
Anticorpos Antivirais/análise , Linfócitos B/imunologia , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/imunologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Administração Oral , Animais , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Fezes/virologia , Vida Livre de Germes , Humanos , Imunidade nas Mucosas , Imunoglobulina A/análise , Imunoglobulina G/sangue , Infecções por Rotavirus/patologia , Vacinas contra Rotavirus/administração & dosagem , Suínos , Eliminação de Partículas Virais
19.
Gut Microbes ; 5(2): 152-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637605

RESUMO

Probiotics facilitate mucosal repair and maintain gut homeostasis. They are often used in adjunct with rehydration or antibiotic therapy in enteric infections. Lactobacillus spp have been tested in infants for the prevention or treatment of various enteric conditions. However, to aid in rational strain selection for specific treatments, comprehensive studies are required to delineate and compare the specific molecules and pathways involved in a less complex but biologically relevant model (gnotobiotic pigs). Here we elucidated Lactobacillus rhamnosus (LGG) and L. acidophilus (LA) specific effects on gut transcriptome responses in a neonatal gnotobiotic (Gn) pig model to simulate responses in newly colonized infants. Whole genome microarray, followed by biological pathway reconstruction, was used to investigate the host-microbe interactions in duodenum and ileum at early (day 1) and later stages (day 7) of colonization. Both LA and LGG modulated common responses related to host metabolism, gut integrity, and immunity, as well as responses unique to each strain in Gn pigs. Our data indicated that probiotic establishment and beneficial effects in the host are guided by: (1) down-regulation or upregulation of immune function-related genes in the early and later stages of colonization, respectively, and (2) alternations in metabolism of small molecules (vitamins and/or minerals) and macromolecules (carbohydrates, proteins, and lipids). Pathways related to immune modulation and carbohydrate metabolism were more affected by LGG, whereas energy and lipid metabolism-related transcriptome responses were prominently modulated by LA. These findings imply that identification of probiotic strain-specific gut responses could facilitate the rational design of probiotic-based interventions to moderate specific enteric conditions.


Assuntos
Trato Gastrointestinal/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Lactobacillus acidophilus/fisiologia , Transcriptoma/genética , Animais , Animais Recém-Nascidos , Suínos
20.
PLoS One ; 8(12): e82966, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312675

RESUMO

Rotaviruses (RV) are a major cause of gastroenteritis in children. Widespread vitamin A deficiency is associated with reduced efficacy of vaccines and higher incidence of diarrheal infections in children in developing countries. We established a vitamin A deficient (VAD) gnotobiotic piglet model that mimics subclinical vitamin A deficiency in children to study its effects on an oral human rotavirus (HRV) vaccine and virulent HRV challenge. Piglets derived from VAD and vitamin A sufficient (VAS) sows were orally vaccinated with attenuated HRV or mock, with/without supplemental vitamin A and challenged with virulent HRV. Unvaccinated VAD control piglets had significantly lower hepatic vitamin A, higher severity and duration of diarrhea and HRV fecal shedding post-challenge as compared to VAS control pigs. Reduced protection coincided with significantly higher innate (IFNα) cytokine and CD8 T cell frequencies in the blood and intestinal tissues, higher pro-inflammatory (IL12) and 2-3 fold lower anti-inflammatory (IL10) cytokines, in VAD compared to VAS control pigs. Vaccinated VAD pigs had higher diarrhea severity scores compared to vaccinated VAS pigs, which coincided with lower serum IgA HRV antibody titers and significantly lower intestinal IgA antibody secreting cells post-challenge in the former groups suggesting lower anamnestic responses. A trend for higher serum HRV IgG antibodies was observed in VAD vs VAS vaccinated groups post-challenge. The vaccinated VAD (non-vitamin A supplemented) pigs had significantly higher serum IL12 (PID2) and IFNγ (PID6) compared to vaccinated VAS groups suggesting higher Th1 responses in VAD conditions. Furthermore, regulatory T-cell responses were compromised in VAD pigs. Supplemental vitamin A in VAD pigs did not fully restore the dysregulated immune responses to AttHRV vaccine or moderate virulent HRV diarrhea. Our findings suggest that that VAD in children in developing countries may partially contribute to more severe rotavirus infection and lower HRV vaccine efficacy.


Assuntos
Linfócitos B/imunologia , Vacinas contra Rotavirus/imunologia , Rotavirus/imunologia , Linfócitos T/imunologia , Deficiência de Vitamina A/imunologia , Deficiência de Vitamina A/fisiopatologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Humanos , Interferon-alfa/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Rotavirus/patogenicidade , Suínos , Deficiência de Vitamina A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA