Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638792

RESUMO

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
3.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
4.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607431

RESUMO

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Assuntos
Hipocampo , Exposição à Radiação , Feminino , Camundongos , Masculino , Animais , Sinapses , Potenciação de Longa Duração , Plasticidade Neuronal
5.
PLoS Comput Biol ; 18(8): e1009938, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984867

RESUMO

Epigenetic clocks allow us to accurately predict the age and future health of individuals based on the methylation status of specific CpG sites in the genome and are a powerful tool to measure the effectiveness of longevity interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most common approach is to create clocks using elastic net regression modelling of all measured CpG sites, without first identifying specific features or CpGs of interest. The addition of feature selection approaches provides the opportunity to optimise the identification of predictive CpG sites. Here, we apply novel feature selection methods and combinatorial approaches including newly adapted neural networks, genetic algorithms, and 'chained' combinations. Human whole blood methylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correlation scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2 correlation score of 0.87. The five most frequent sites across all clocks were modelled to build a clock with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they maintain excellent predictive accuracy. When compared with three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these validation datasets, our clocks outperformed all three models. We identified gene regulatory regions associated with selected CpGs as possible targets for future aging studies. Thus, our feature selection algorithms build accurate, generalizable clocks with a low number of CpG sites, providing important tools for the field.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Humanos , Longevidade/genética
6.
Br J Clin Pharmacol ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675638

RESUMO

Preclinical models have been the backbone of translational research for more than a century. Rats and mice are critical models in the preliminary stages of drug testing, both for determining efficacy and ruling out potential human-relevant toxicities. Historically, most preclinical pharmacological studies have used young, relatively healthy, inbred male models in highly controlled environments. In the field of geriatric pharmacology, there is a growing focus on the importance of using more appropriate preclinical models both in the testing of therapeutics commonly used in older populations, and in the evaluation of potential geroprotective drug candidates. Here we provide a commentary on optimizing preclinical models of ageing for translation to clinical trials. We will discuss approaches to modelling clinically relevant contexts such as age, sex, genetic diversity, exposures and environment, as well as measures of clinically relevant outcomes such as frailty and healthspan. We will identify the strengths and limitations of these approaches and areas for improvement. We will also briefly cover new preclinical models that move beyond rodents. We hope this commentary will be a springboard for larger discussions on optimizing preclinical ageing models for testing therapeutics.

7.
Crit Rev Biochem Mol Biol ; 54(1): 61-83, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30822165

RESUMO

The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Reprogramação Celular , Cromatina/genética , Ilhas de CpG , Metilação de DNA , Humanos
8.
Circ Res ; 123(7): 868-885, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30355082

RESUMO

The sirtuin family of nicotinamide adenine dinucleotide-dependent deacylases (SIRT1-7) are thought to be responsible, in large part, for the cardiometabolic benefits of lean diets and exercise and when upregulated can delay key aspects of aging. SIRT1, for example, protects against a decline in vascular endothelial function, metabolic syndrome, ischemia-reperfusion injury, obesity, and cardiomyopathy, and SIRT3 is protective against dyslipidemia and ischemia-reperfusion injury. With increasing age, however, nicotinamide adenine dinucleotide levels and sirtuin activity steadily decrease, and the decline is further exacerbated by obesity and sedentary lifestyles. Activation of sirtuins or nicotinamide adenine dinucleotide repletion induces angiogenesis, insulin sensitivity, and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Human clinical trials testing agents that activate SIRT1 or boost nicotinamide adenine dinucleotide levels are in progress and show promise in their ability to improve the health of cardiovascular and metabolic disease patients.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/enzimologia , Sistema Cardiovascular/enzimologia , Doenças Metabólicas/enzimologia , NAD/metabolismo , Sirtuínas/metabolismo , Fatores Etários , Envelhecimento/patologia , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/patologia , Doenças Metabólicas/fisiopatologia , Regulação para Cima
9.
Adv Exp Med Biol ; 1065: 389-411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30051398

RESUMO

Cardiovascular diseases increase dramatically with age in both men and women. While it is clear that advanced age allows more time for individuals to be exposed to risk factors in general, there is strong evidence that age itself is a major independent risk factor for cardiovascular disease. Indeed, there are distinct age-dependent cellular, structural, and functional changes in both the heart and blood vessels, even in individuals with no clinical evidence of cardiovascular disease. Studies in older humans and in animal models of aging indicate that this age-related remodeling is maladaptive. An emerging view is that the heart and blood vessels accumulate cellular and subcellular deficits with age and these deficits increase susceptibility to disease in older individuals. Aspects of this age-dependent remodeling of the heart and blood vessels differ between the sexes. There is also new evidence that these maladaptive changes are more prominent in older animals and humans with a high degree of frailty. These observations may help explain why men and women are susceptible to different cardiovascular diseases as they age and why frail older adults are most often affected by these diseases.


Assuntos
Envelhecimento , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Disparidades nos Níveis de Saúde , Hemodinâmica , Função Ventricular Esquerda , Função Ventricular Direita , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças Cardiovasculares/diagnóstico , Sistema Cardiovascular/diagnóstico por imagem , Sistema Cardiovascular/patologia , Feminino , Idoso Fragilizado , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Prognóstico , Fatores de Risco , Fatores Sexuais , Remodelação Ventricular
10.
Can J Physiol Pharmacol ; 95(10): 1149-1155, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28463656

RESUMO

Frailty is considered a state of high vulnerability for adverse health outcomes for people of the same age. Those who are frail have higher mortality, worse health outcomes, and use more health care services than those who are not frail. Despite this, little is known about the biology of frailty, the effect of frailty on pharmacological or surgical outcomes, and potential interventions to attenuate frailty. In humans, frailty can be quantified using a frailty index (FI) based on the principle of deficit accumulation. The recent development of an FI in naturally ageing mice provides an opportunity to conduct frailty research in a validated preclinical model. The mouse FI has been successfully used across a wide range of applications; however, there are some factors that should be considered in implementing this tool. This review summarises the current literature, presents some original data, and suggests areas for future research on the current applications of the mouse FI, inter-rater reliability of the FI, the effect of observer characteristics and environmental factors on mouse FI scores, and the individual items that make up the FI assessment. The implementation of this tool into preclinical frailty research should greatly accelerate translational research in this important field.


Assuntos
Técnicas de Apoio para a Decisão , Fragilidade/diagnóstico , Pesquisa Translacional Biomédica/métodos , Fatores Etários , Envelhecimento , Animais , Modelos Animais de Doenças , Meio Ambiente , Humanos , Camundongos , Variações Dependentes do Observador , Valor Preditivo dos Testes , Fatores de Risco , Índice de Gravidade de Doença
11.
Clin Exp Pharmacol Physiol ; 43(12): 1251-1260, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626269

RESUMO

The incidence of cardiovascular disease is rising as the population ages. This has led to an increase in the need to perform cardiac surgery in older patients. However, aged hearts are particularly susceptible to reperfusion injury following periods of myocardial ischaemia that occur during cardiac surgery. Indeed, older adults experience myocardial dysfunction and reduced survival post-surgery compared to younger people and certain groups, including older women and frail older adults, are at particular risk. This highlights the need to design cardioprotective strategies specifically for the ageing heart. Cardioprotection during surgery is often accomplished by perfusing the heart with chemical arresting agents, known as cardioplegic solutions. New protective strategies have been developed and tested in animal models, where cardioplegic solutions have been modified by changing their temperature, chemical components and/or the frequency of delivery. In addition, drugs designed to activate cardioprotective mechanisms or to inhibit mechanisms involved in injury have been added to improve the efficacy of these solutions. However, most experimental studies have developed and optimized cardioplegic solutions in hearts from younger male animals. This review discusses pre-clinical models used to optimize cardioplegic solutions, with an emphasis on the few studies that have used hearts from older animals. Pharmacologic agents that have been shown to enhance the benefits of cardioplegia in younger hearts and could, in theory, protect vulnerable older hearts are also considered. We emphasize the need to conduct studies in frail older animals of both sexes to facilitate translation of laboratory-based observations to the clinic.


Assuntos
Envelhecimento/fisiologia , Cardiotônicos/farmacologia , Coração/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Avaliação Pré-Clínica de Medicamentos/métodos , Coração/efeitos dos fármacos , Parada Cardíaca Induzida/métodos , Parada Cardíaca Induzida/tendências , Humanos
12.
Cell Metab ; 36(5): 893-911, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38614092

RESUMO

On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.


Assuntos
Envelhecimento , Fragilidade , Idoso , Animais , Humanos , Envelhecimento/metabolismo , Metabolismo Energético , Idoso Fragilizado , Fragilidade/metabolismo , Doenças Metabólicas/metabolismo
13.
Nat Aging ; 4(2): 261-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200273

RESUMO

Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.


Assuntos
Metilação de DNA , Trabalho de Parto , Gravidez , Feminino , Humanos , Camundongos , Animais , Metilação de DNA/genética , Epigênese Genética , Envelhecimento/genética , Epigenômica/métodos
14.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979132

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essential for many enzymatic reactions, including those involved in energy metabolism, DNA repair and the activity of sirtuins, a family of defensive deacylases. During aging, levels of NAD + can decrease by up to 50% in some tissues, the repletion of which provides a range of health benefits in both mice and humans. Whether or not the NAD + precursor nicotinamide mononucleotide (NMN) extends lifespan in mammals is not known. Here we investigate the effect of long-term administration of NMN on the health, cancer burden, frailty and lifespan of male and female mice. Without increasing tumor counts or severity in any tissue, NMN treatment of males and females increased activity, maintained more youthful gene expression patterns, and reduced overall frailty. Reduced frailty with NMN treatment was associated with increases in levels of Anerotruncus colihominis, a gut bacterium associated with lower inflammation in mice and increased longevity in humans. NMN slowed the accumulation of adipose tissue later in life and improved metabolic health in male but not female mice, while in females but not males, NMN increased median lifespan by 8.5%, possible due to sex-specific effects of NMN on NAD + metabolism. Together, these data show that chronic NMN treatment delays frailty, alters the microbiome, improves male metabolic health, and increases female mouse lifespan, without increasing cancer burden. These results highlight the potential of NAD + boosters for treating age-related conditions and the importance of using both sexes for interventional lifespan studies.

15.
Mech Ageing Dev ; 210: 111762, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36509213

RESUMO

Changes in gene expression with age are typically normalised to constitutively expressed reference genes (RGs). However, RG expression may be affected by age or overall health and most studies use only male animals. We investigated whether expression of common RGs (Gapdh, Gusb, Rplp0, B2m, Tubb5, Rpl7l1, Hprt, Rer1) was affected by age, sex and/or overall health (frailty index) in skeletal muscle from young (4-mos) and aged (25-26-mos) mice. Standard RG selection programs recommended Gapdh (RefFinder/Genorm/NormFinder) or Rpl7l1 (BestKeeper) without considering age and sex. Analysis of raw Cq values showed only Rplp0 was stable in both sexes at both ages. When qPCR data were normalised to Rplp0, age affected RG expression, especially in females. For example, Hprt expression declined with age (Hprt=9.8 ×10-2 ± 4.7 ×10-2 vs. 6.5 ×10-3 ± 8.8 ×10-4; mean±SEM), while Gusb expression increased (6.0 ×10-4 ± 5.5 ×10-5 vs. 1.7 ×10-3 ± 3.1 ×10-4; n = 5/group; p < 0.05). These effects were not seen in males. Tubb5 and Gapdh were not affected by age or sex when normalised to Rplp0. Similar results were seen with normalisation by Gapdh or the Rplp0/Gapdh pair. Interestingly, RG expression was graded not only by age but by frailty. These data demonstrate that age, sex, and frailty of animals must be carefully considered when selecting RGs to normalise mRNA abundance data.


Assuntos
Fragilidade , Perfilação da Expressão Gênica , Feminino , Masculino , Camundongos , Animais , Perfilação da Expressão Gênica/métodos , Fragilidade/genética , Hipoxantina Fosforribosiltransferase , RNA Mensageiro/genética , Músculo Esquelético , Reação em Cadeia da Polimerase em Tempo Real/métodos
16.
J Gerontol A Biol Sci Med Sci ; 77(11): 2177-2180, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35172335

RESUMO

Five years ago, the National Institute of Health (NIH) introduced a mandate to revolutionize the way sex as a biological variable (SABV) is considered in NIH-funded preclinical research. Given the known effects of sex on aging physiology, pathology, treatment response, and the effectiveness of interventions it is particularly important that SABV be considered in basic biology of aging research. Five years after this mandate, a significant amount of published work funded by the National Institute on Aging (NIA) is still not including mice of both sexes and/or not considering sex differences or comparisons in preclinical studies. Here we review a cross-section of recently published NIA-funded research to determine adherence to this mandate. We discuss the state of the preclinical aging field in terms of SABV and suggest strategies for improving adherence to the NIH mandate. It is imperative that we consider SABV and include males and females in all aspects of aging biology research to improve health outcomes for all.


Assuntos
Pesquisa Biomédica , Feminino , Masculino , Animais , Camundongos , Fatores Sexuais , Gerociência , Caracteres Sexuais , Envelhecimento
17.
Elife ; 112022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409200

RESUMO

As an organism ages, its health-state is determined by a balance between the processes of damage and repair. Measuring these processes requires longitudinal data. We extract damage and repair transition rates from repeated observations of binary health attributes in mice and humans to explore robustness and resilience, which respectively represent resisting or recovering from damage. We assess differences in robustness and resilience using changes in damage rates and repair rates of binary health attributes. We find a conserved decline with age in robustness and resilience in mice and humans, implying that both contribute to worsening aging health - as assessed by the frailty index (FI). A decline in robustness, however, has a greater effect than a decline in resilience on the accelerated increase of the FI with age, and a greater association with reduced survival. We also find that deficits are damaged and repaired over a wide range of timescales ranging from the shortest measurement scales toward organismal lifetime timescales. We explore the effect of systemic interventions that have been shown to improve health, including the angiotensin-converting enzyme inhibitor enalapril and voluntary exercise for mice. We have also explored the correlations with household wealth for humans. We find that these interventions and factors affect both damage and repair rates, and hence robustness and resilience, in age and sex-dependent manners.


Assuntos
Envelhecimento , Animais , Humanos , Camundongos , Envelhecimento/fisiologia
18.
J Gerontol A Biol Sci Med Sci ; 77(7): 1304-1312, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313348

RESUMO

The Frailty Inferred Geriatric Health Timeline (FRIGHT) and Analysis of Frailty and Death (AFRAID) clocks were developed to predict biological age and lifespan, respectively, in mice. Their utility within the context of polypharmacy (≥5 medications), which is very common in older adults, is unknown. In male C57BL/6J(B6) mice administered chronic polypharmacy, monotherapy, and undergoing treatment cessation (deprescribing), we aimed to compare these clocks between treatment groups; investigate whether treatment affected correlation of these clocks with mortality; and explore factors that may explain variation in predictive performance. Treatment (control, polypharmacy, or monotherapy) commenced from age 12 months. At age 21 months, each treatment group was subdivided to continue treatment or have it deprescribed. Frailty index was assessed and informed calculation of the clocks. AFRAID, FRIGHT, frailty index, and mortality age did not differ between continued treatment groups and control. Compared to continued treatment, deprescribing some treatments had inconsistent negative impacts on some clocks and mortality. FRIGHT and frailty index, but not AFRAID, were associated with mortality. The bias and precision of AFRAID as a predictor of mortality varied between treatment groups. Effects of deprescribing some drugs on elements of the clocks, particularly on weight loss, contributed to bias. Overall, in this cohort, FRIGHT and AFRAID measures identified no treatment effects and limited deprescribing effects (unsurprising as very few effects on frailty or mortality), with variable prediction of mortality. These clocks have utility, but context is important. Future work should refine them for intervention studies to reduce bias from specific intervention effects.


Assuntos
Desprescrições , Fragilidade , Idoso , Animais , Estudos de Coortes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimedicação
19.
Exp Gerontol ; 161: 111700, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032570

RESUMO

Use of different objective frailty assessment tools may improve understanding of the biology of frailty and allow evaluation of effects of interventions on frailty. Polypharmacy is associated with increased risk of frailty in epidemiologic studies, regardless of frailty definition, but the pathophysiology of the association is not well understood. This study aims to (1) assess and compare the prevalence of frailty from middle to old age following control, chronic polypharmacy or monotherapy treatment, when measured using the clinical frailty index assessment and the mouse frailty phenotype tools; and (2) to evaluate and compare the effects of chronic polypharmacy regimens with zero, low and high Drug Burden Index (DBI) and monotherapies from middle to old age on the rate of deficit accumulation on the frailty index, mean number of phenotype criteria, odds of being frail assessed by the frailty index or phenotype, and the time to onset of frailty assessed by the frailty index or phenotype. In a longitudinal study, middle-aged (12 months) male C57BL/6J(B6) mice were administered non medicated control feed and water, or therapeutic doses of different polypharmacy combinations or monotherapies in feed and/or water. Frailty assessments were performed at 12, 15, 18, 21 and 24 months. There was limited overlap between animals identified as frail using different frailty assessments. Polypharmacy has measurable and different effects on each frailty assessment. Long-term chronic administration of some polypharmacy and monotherapy therapeutic drug regimens increased the number of frailty deficits (clinical frailty index: low DBI polypharmacy (15 and 21 months), high DBI polypharmacy (15-21 months), oxycodone (15-18 months), oxybutynin (15-18 months), citalopram (15-21 months) and metoprolol monotherapy (15 months) and modified frailty phenotype assessment (over the whole duration of treatment, low DBI polypharmacy (adjusted Risk Ratio(aRR) = 1.97, 95% confidence interval (CI) 1.43-2.72), high DBI polypharmacy (aRR = 1.88; 95% CI 1.36-2.60), oxybutynin (aRR = 1.48; 95% CI 1.01-2.16) and citalopram monotherapy (aRR = 1.96; 95% CI 1.41-2.74), p < 0.05) . The odds of developing frailty measured with the clinical frailty index increased with high DBI polypharmacy (adjusted odds ratio (aOR) = 3.13; 95% CI 1.01-9.66) and when measured with the frailty phenotype assessment increased with low DBI polypharmacy (aOR = 4.38, 95% CI 1.40-13.74), high DBI polypharmacy (aOR = 3.43; 95% CI 1.12-10.50) and citalopram monotherapy (aOR = 4.63; 95% CI 1.39-15.54)). No treatment affected time to frailty using either frailty assessment. Analysis of the number of deficits on the frailty index or number of positive criteria on the frailty phenotype allows analysis of rate of change and provides greater sensitivity, while the odds of being frail analysis provided a clinically relevant indicator of whether mice had greater chance of reaching a cut-off for becoming frail with medication exposure than without. Our results are consistent with clinical studies, demonstrating that certain polypharmacy regimens induce frailty, with different relationships observed when using different frailty assessments and analyses.


Assuntos
Fragilidade , Idoso , Animais , Idoso Fragilizado , Fragilidade/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fenótipo , Polimedicação
20.
Mech Ageing Dev ; 198: 111546, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324923

RESUMO

Frailty can be viewed as a state of physiological decline that increases susceptibility to adverse health outcomes. This loss of physiological reserve means that even small stressors can lead to disability and death in frail individuals. Frailty can be measured with various clinical tools; the two most popular are the frailty index and the frailty phenotype. Clinical studies have used these tools to show that women are frailer than men even though they have longer lifespans. Still, factors responsible for this frailty-mortality paradox are not well understood. This review highlights evidence for male-female differences in frailty from both the clinical literature and in animal models of frailty. We review evidence for higher frailty levels in female animals as seen in many preclinical models. Mechanisms that may contribute to sex differences in frailty are highlighted. In addition, we review work that suggests frailty may play a role in susceptibility to chronic diseases of aging in a sex-specific fashion. Additional mechanistic studies in preclinical models are needed to understand factors involved in male-female differences in frailty in late life.


Assuntos
Envelhecimento/fisiologia , Doença Crônica/epidemiologia , Suscetibilidade a Doenças/epidemiologia , Fragilidade , Indicadores Básicos de Saúde , Fatores Sexuais , Idoso , Animais , Idoso Fragilizado , Fragilidade/diagnóstico , Fragilidade/genética , Humanos , Longevidade/fisiologia , Mortalidade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA