Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 17(4)2017 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-28397751

RESUMO

This paper describes the use of an analytical microfluidic sensor for accelerating chemo-repellent response and strong anti-bacterial 1-(Thien-2-yl)-3-(2, 6-difluoro phenyl) prop-2-en-1-one (1-TDPPO). The chemically-synthesized antimicrobial agent, which included prop-2-en-1-one and difluoro phenyl groups, was moving through an optically transparent polydimethylsiloxane (PDMS) microfluidic sensor with circular obstacles arranged evenly. The response, growth and distribution of fluorescent labeling Pseudomonas aeruginosa PAO1 against the antimicrobial agent were monitored by confocal laser scanning microscope (CLSM). The microfluidic sensor along with 1-TDPPOin this study exhibits the following advantages: (i) Real-time chemo-repellent responses of cell dynamics; (ii) Rapid eradication of biofilm by embedded obstacles and powerful antibacterial agents, which significantly reduce the response time compared to classical methods; (iii) Minimal consumption of cells and antimicrobial agents; and (iv) Simplifying the process of the normalization of the fluorescence intensity and monitoring of biofilm by captured images and datasets.


Assuntos
Microfluídica , Antibacterianos , Biofilmes , Microscopia Confocal , Pseudomonas aeruginosa
2.
Molecules ; 21(6)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-27322239

RESUMO

Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies that a microfluidic device operating with steady-state flows does not provide fully reliable information, even though less PDMS bulging is observed compared to quasi steady-state flow. Numerical analysis of PDMS bulging using ANSYS Workbench showed a relatively good agreement with the measured data. To verify the influence of PDMS bulging on the pressure drop and flow velocity, theoretical analyses were performed and the results were compared with the experimental results. The measured flow velocity and pressure drop data relatively matched well with the classical prediction under certain circumstances. However, discrepancies were generated and became worse as the microfluidic devices were operated under the following conditions: (1) restricted geometry of the microfluidic channels (i.e., shallow channel height, large diameter of obstacles and a short microchannel length); (2) operation in quasi-steady state flow; (3) increasing flow rates; and (4) decreasing amount of curing agent in the PDMS mixture. Therefore, in order to obtain reliable data a microfluidic device must be operated under appropriate conditions.


Assuntos
Dimetilpolisiloxanos/química , Microfluídica/métodos , Modelos Teóricos , Microfluídica/instrumentação , Pressão
3.
Bioprocess Biosyst Eng ; 37(10): 1997-2004, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24671272

RESUMO

Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface. Analysis by scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the addition of 3-MPTMS resulted in an alternation of the chemical characteristics of the solution. Atomic force microscopy imaging supported the notion that silicon surface modification is the most important factor on tribological properties of materials along with ligand-modified Au NPs. The density of Au NPs on a silicon surface was significantly dependent on several factors, including the concentration of colloidal Au NPs, deposition time, and concentration of 3-MPTMS solution, while temperature range which was used throughout experiment was determined to have no significant effect. A relatively high density of Au NPs forms on the silicon surface as the concentrations of Au NPs and 3-MPTMS are increased. In addition, the maximum deposition of Au NPs on silicon wafer was observed at 3 h, while the effects of temperature variation were minimal.


Assuntos
Coloides , Ouro/química , Nanopartículas Metálicas , Silício/química
4.
Molecules ; 19(10): 16684-92, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25325153

RESUMO

Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol. In a 5 L (w/v 3 L) jar fermentation, this wild type Streptomyces sp. in the batch system produced 205 mg of piceatannol (i.e., 60% yields) from 342 mg of resveratrol in 20 h. Using the product, an in vitro anti-cancer study was performed against a human cancer cell line (HeLa). It showed that the biotransformed piceatannol possessed a significant anticancer activity. This result demonstrates that a biotransformation screening method might be of therapeutic interest with respect to the identification of anti-cancer drugs.


Assuntos
Antineoplásicos/metabolismo , Biotransformação , Neoplasias/tratamento farmacológico , Estilbenos/metabolismo , Streptomyces/crescimento & desenvolvimento , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Células HeLa , Humanos , Hidroxilação , Neoplasias/metabolismo , Resveratrol , Streptomyces/classificação , Streptomyces/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36554310

RESUMO

Leakage accidents at chemical facilities have a negative impact on both the environment and human life, and the government has established and implemented regulations on dikes in order to minimize such accidents. However, the overtopping phenomenon in which chemicals overflow the dike due to catastrophic leakage requires additional safeguards. In this study, the mitigation effect was confirmed by simulating tanks and dikes using various deflector plates to minimize the effect of spilled chemicals. ANSYS Fluent 19.1, a computational fluid dynamics program, was used, and the overtopping effect was compared with a dike design that satisfies the safety regulations using a volume of fluid (VOF) model that analyzes multiphase flow through a surface tracking technique. Nitric acid and sulfuric acid were used in the study; they were selected because they are frequently involved in leakage accidents. In the event of a leak in a liquid tank, a dike with a deflector plate was very effective in reducing overtopping, and a deflector at a 45° angle was more effective than a 30° deflector. However, it is necessary to install additional safeguards at the joint between the dike and the deflection plate to withstand the force of the liquid.


Assuntos
Hidrodinâmica , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-34769734

RESUMO

The increasing use and distribution of chemicals are causing serious chemical accidents such as fires, explosions, and leaks during manufacturing and handling. In most cases, all risks caused by chemicals are classified as accidents due to defects in process facilities, human errors, and multi-cause accidents. Among chemical accidents caused by human errors, accurate analysis of accidents caused by the complex action of various types of human failures is required. Based on the accident investigation reports that occurred in South Korea from 2010 to 2017, chemical accidents caused by human failure were analyzed, and the fundamental causes were derived by classifying them into human error and violation. Human failure was analyzed according to the classification criteria for human failure of health and safety executive (HSE). As a result of the analysis, several types of human failure acted in combination to be a more significant cause of chemical accidents; incorrect application of process rules and procedures, inappropriate chemical information, lack of education, and defects in the current safety regulation were analyzed as the main causes. In addition, the cause of human errors was presented through case studies of chemical accidents in South Korea.


Assuntos
Vazamento de Resíduos Químicos , Incêndios , Acidentes , Acidentes de Trabalho , Humanos , República da Coreia/epidemiologia
7.
R Soc Open Sci ; 6(5): 182069, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218033

RESUMO

Recently, the impact of radioactive caesium (Cs) and strontium (Sr) on human health and the ecosystem has been a major concern due to the use of nuclear energy. However, this study observed changes in green-fluorescent (GFP)-tagged Pseudomonas aeruginosa PAO1 biofilms by injecting non-radioactive caesium chloride (CsCl) and strontium chloride (SrCl2) into microstructures embedded in polydimethylsiloxane microfluidic devices, which were used due to their strong toxicity limitations. Four types of microstructures with two different diameters were used in the study. The change of biofilm thickness from fluid velocity and wall shear stress was estimated using computational fluid dynamics and observed throughout the experiment. The effect of pore space became a significant physical factor when the fluid was flowing through the microfluidic devices. As the pore space increased, the biofilm growth increased; therefore, triangular microstructures with the largest pore space showed the best growth of biofilm. Caesium chloride (CsCl) and strontium chloride (SrCl2), less toxic than radioactive caesium (Cs) and strontium (Sr), completely eradicated the P. aeruginosa PAO1 biofilm with low concentrations. The combined effect of toxicity, fluid velocity, wall shear stress and microstructures increased the efficiency of biofilm eradication. These findings on microfluidic chips can help to indirectly predict the impact on human public health and ecosystems without using radioactive chemicals.

8.
Polymers (Basel) ; 9(4)2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30970800

RESUMO

Escherichia coli (E. coli) was used to activate hydrolysis reaction along with biodegradation in natural and synthetic fibers to identify possibilities as alternative substitutes for textile wastes using chemical solutions and enzymes. To confirm the reaction between the bacterial infections of E. coli and the excessively abundant interstitial spaces of the fibers, various types of natural and synthetic fibers such as cotton, wool, polyethylene terephalate (PET), polyadmide (PA), polyethylene (PE), and polypropylene (PP) were used to confirm the physico-chemical reactions. Tensile strength analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis were used to determine the physico-chemical property changes of the fiber by the bacteria. When biofilm was formed on the fiber surface, various physical changes such as the following were observed: (i) in the analysis of tensile strength, all except PA and PP were decreased and a decrease in cotton fibers was noticeable (ii) depending on the type of fibers, the degree of roughness was different, but generally the surface became rough. In this study, the change of roughness was the most severe on the cotton fiber surface and the change of PET and PA fiber was relatively small. It was found that the intensity peak of oxygen was increased, except for the in cases of PA and PP, through the change of chemical properties by XPS analysis. Changes in topographical properties on the surface through contact angle analysis were stronger in hydrophilic properties, and in the case of cotton, completely hydrophilic surfaces were formed. Through this study, PA and PP fibers, which are Olefin fibers, were theoretically free of physicochemical and topographical changes since there were no functional groups that could trigger the hydrolysis reaction.

9.
Polymers (Basel) ; 9(8)2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971033

RESUMO

Functional p-aramid fibers that can express antimicrobial activity were produced by simple processing of silver nanoparticles (AgNPs), which are well known as antimicrobial agents, by using glycidyltrimethylammonium chloride (GTAC), a quaternary ammonium salt. P-aramid fibers were treated with GTAC by the pad-dry-cure process and put into an Ag colloid solution for reactions at 40 °C for 90 min to prepare GTAC/AgNPs-treated p-aramid fibers. Through these processes, GTAC was used as a substitute for existing cross-linking agents. The changes in the degree of attachment of AgNPs to the surface of p-aramid fibers were determined using a scanning electron microscope according to parameters such as GTAC concentration, Ag colloid concentration, and reaction temperature. Through this study, the following results were obtained: (i) The tensile strength of AgNPs/GTAC-treated p-aramid fibers was found to be about 80% of that of untreated p-aramid fibers; (ii) Thermogravimetric analysis showed that the thermal stability of p-aramid fibers did not change much after GTAC/AgNPs treatment and (iii) Antimicrobial activity analysis showed that AgNPs/GTAC-treated p-aramid fibers exhibited superior antibacterial properties compared to untreated p-aramid fibers, which may or may not be the effect of GTAC or AgNPs, or both.

10.
Materials (Basel) ; 9(10)2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28773958

RESUMO

Deformable polydimethylsiloxane (PDMS) microfluidic devices embedded with three differently-shaped obstacles (hexagon, square, and triangle) were used to examine the significant challenge to classical fluid dynamics. The significant factors in determining a quasi-steady state value of flow velocity (v)QS and pressure drop per unit length (∆P/∆x)QS were dependent on the characteristic of embedded microstructures as well as the applied flow rates. The deviation from the theoretical considerations due to PDMS bulging investigated by the friction constant and the normalized friction factor revealed that the largest PDMS bulging observed in hexagonal obstacles had the smallest (∆P/∆x)QS ratios, whereas triangle obstacles exhibited the smallest PDMS bulging, but recorded the largest (∆P/∆x)QS ratios. However, the influence of (v)QS ratio on microstructures was not very significant in this study. The results were close to the predicted values even though some discrepancy may be due to the relatively mean bulging and experimental uncertainty. The influence of deformable PDMS microfluidic channels with various shapes of embedded microstructures was compared with the rigid microchannels. The significant deviation from the classical relation (i.e., f~1/Re) was also observed in hexagonal obstacles and strongly dependent on the channel geometry, the degree of PDMS deformation, and the shapes of the embedded microstructures.

11.
Biomicrofluidics ; 7(5): 54102, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24404065

RESUMO

Understanding the mechanical properties of optically transparent polydimethylsiloxane (PDMS) microchannels was essential to the design of polymer-based microdevices. In this experiment, PDMS microchannels were filled with a 100 µM solution of rhodamine 6G dye at very low Reynolds numbers (∼10(-3)). The deformation of PDMS microchannels created by pressure-driven flow was investigated by fluorescence microscopy and quantified the deformation by the linear relationship between dye layer thickness and intensity. A line scan across the channel determined the microchannel deformation at several channel positions. Scaling analysis widely used to justify PDMS bulging approximation was allowed when the applied flow rate was as high as 2.0 µl/min. The three physical parameters (i.e., flow rate, PDMS wall thickness, and mixing ratio) and the design parameter (i.e., channel aspect ratio = channel height/channel width) were considered as critical parameters and provided the different features of pressure distributions within polymer-based microchannel devices. The investigations of the four parameters performed on flexible materials were carried out by comparison of experiment and finite element method (FEM) results. The measured Young's modulus from PDMS tensile test specimens at various circumstances provided reliable results for the finite element method. A thin channel wall, less cross-linker, high flow rate, and low aspect ratio microchannel were inclined to have a significant PDMS bulging. Among them, various mixing ratios related to material property and aspect ratios were one of the significant factors to determine PDMS bulging properties. The measured deformations were larger than the numerical simulation but were within corresponding values predicted by the finite element method in most cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA