Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 187: 106606, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516884

RESUMO

Epidermal growth factor receptor variant III (EGFRvIII) is a mutant isoform of EGFR with a deletion of exons 2-7 making it insensitive to EGF stimulation and downstream signal constitutive activation. However, the mechanism underlying the stability of EGFRvIII remains unclear. Based on CRISPR-Cas9 library screening, we found that mucin1 (MUC1) is essential for EGFRvIII glioma cell survival and temozolomide (TMZ) resistance. We revealed that MUC1-C was upregulated in EGFRvIII-positive cells, where it enhanced the stability of EGFRvIII. Knockdown of MUC1-C increased the colocalization of EGFRvIII and lysosomes. Upregulation of MUC1 occurred in an NF-κB dependent manner, and inhibition of the NF-κB pathway could interrupt the EGFRvIII-MUC1 feedback loop by inhibiting MUC1-C. In a previous report, we identified AC1Q3QWB (AQB), a small molecule that could inhibit the phosphorylation of NF-κB. By screening the structural analogs of AQB, we obtained EPIC-1027, which could inhibit the NF-κB pathway more effectively. EPIC-1027 disrupted the EGFRvIII-MUC1-C positive feedback loop in vitro and in vivo, inhibited glioma progression, and promoted sensitization to TMZ. In conclusion, we revealed the pivotal role of MUC1-C in stabilizing EGFRvIII in glioblastoma (GBM) and identified a small molecule, EPIC-1027, with great potential in GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , NF-kappa B/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Mucina-1/genética
2.
Mol Ther ; 29(11): 3305-3318, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34274537

RESUMO

FGFR3-TACC3 (F3-T3) gene fusions are regarded as a "low-hanging fruit" paradigm for precision therapy in human glioblastoma (GBM). Small molecules designed to target the kinase in FGFR currently serve as one form of potential treatment but cause off-target effects and toxicity. Here, CRISPR-Cas13a, which is known to directly suppress gene expression at the transcriptional level and induce a collateral effect in eukaryotes, was leveraged as a possible precision therapy in cancer cells harboring F3-T3 fusion genes. A library consisting of crRNAs targeting the junction site of F3-T3 was designed, and an in silico simulation scheme was created to select the optimal crRNA candidates. An optimal crRNA, crRNA1, showed efficiency and specificity in inducing the collateral effect in only U87 cells expressing F3-T3 (U87-F3-T3). Expression profiles obtained with microarray analysis were consistent with induction of the collateral effect by the CRISPR-Cas13a system. Tumor cell proliferation and colony formation were decreased in U87-F3-T3 cells expressing the Cas13a-based tool, and tumor growth was suppressed in an orthotopic tumor model in mice. These findings demonstrate that the CRISPR-Cas13a system induces the collateral damage effect in cancer cells and provides a viable strategy for precision tumor therapy based on the customized design of a CRISPR-Cas13a-based tool against F3-T3 fusion genes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Glioblastoma/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Fusão Oncogênica/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/patologia , Xenoenxertos , Humanos , Ligação de Hidrogênio , Camundongos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Conformação de Ácido Nucleico , Proteínas de Fusão Oncogênica/química , Ligação Proteica , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química
3.
Proc Natl Acad Sci U S A ; 116(14): 6975-6984, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877245

RESUMO

Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma. The CDC20-M, containing 139 members involved in cell proliferation, DNA damage response, and chromosome segregation, was found to be consistently coexpressed in glioma transcriptomes. The coexpression of these genes was conserved across multiple species and organ systems, particularly in human neural stem and progenitor cells. CDC20-M expression was not correlated with the morphological subtypes, nor with the recently defined molecular subtypes of glioma. CDC20-M signature was an independent and robust predictor for poorer prognosis in over 1,000 patients from four large databases. Elevated CDC20-M signature enabled the identification of individual glioma samples with severe chromosome instability and mutation burden and of primary glioma cell lines with extensive mitotic errors leading to chromosome mis-segregation. AURKA, a core member of CDC20-M, was amplified in one-third of CDC20-M-high gliomas with gene-dosage-dependent expression. MLN8237, a Food and Drug Administration-approved AURKA inhibitor, selectively killed temozolomide-resistant primary glioma cells in vitro and prolonged the survival of a patient-derived xenograft mouse model with a high-CDC20-M signature. Our findings suggest that application of the CDC20-M signature may permit more selective use of adjuvant therapies for glioma patients and that dysregulated CDC20-M members may provide a therapeutic vulnerability in glioma.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas Cdc20/biossíntese , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Glioma/metabolismo , Proteínas de Neoplasias/biossíntese , Animais , Biomarcadores Tumorais/genética , Proteínas Cdc20/genética , Quimioterapia Adjuvante , Feminino , Perfilação da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Pharmacol Res ; 171: 105764, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246782

RESUMO

Glioblastoma (GBM) is the most common primary central nervous system tumor and has a poor prognosis, with a median survival time of only 14 months from diagnosis. Abnormally expressed long noncoding RNAs (lncRNAs) are important epigenetic regulators of chromatin modification and gene expression regulation in tumors, including GBM. We previously showed that the lncRNA HOTAIR is related to the cell cycle progression and can be used as an independent predictor in GBM. Lysine-specific demethylase 1 (LSD1), binding to 3' domain of HOTAIR, specifically removes mono- and di-methyl marks from H3 lysine 4 (H3K4) and plays key roles during carcinogenesis. In this study, we combined a HOTAIR-EZH2 disrupting agent and an LSD1 inhibitor, AC1Q3QWB (AQB) and GSK-LSD1, respectively, to block the two functional domains of HOTAIR and potentially provide therapeutic benefit in the treatment of GBM. Using an Agilent Human ceRNA Microarray, we identified tumor suppressor genes upregulated by AQB and GSK-LSD1, followed by Chromatin immunoprecipitation (ChIP) assays to explore the epigenetic mechanisms of genes activation. Microarray analysis showed that AQB and GSK-LSD1 regulate cell cycle processes and induces apoptosis in GBM cell lines. Furthermore, we found that the combination of AQB and GSK-LSD1 showed a powerful effect of inhibiting cell cycle processes by targeting CDKN1A, whereas apoptosis promoting effects of combination therapy were mediated by BBC3 in vitro. ChIP assays revealed that GSK-LSD1 and AQB regulate P21 and PUMA, respectively via upregulating H3K4me2 and downregulating H3K27me3. Combination therapy with AQB and GSK-LSD1 on tumor malignancy in vitro and GBM patient-derived xenograft (PDX) models shows enhanced anti-tumor efficacy and appears to be a promising new strategy for GBM treatment through its effects on epigenetic regulation.


Assuntos
Benzofuranos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Histona Desmetilases/antagonistas & inibidores , RNA Longo não Codificante/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Neoplasias Encefálicas/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus
5.
Mol Ther ; 28(2): 503-522, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843449

RESUMO

Repetitive mild traumatic brain injury (rmTBI) is considered to be an important risk factor for long-term neurodegenerative disorders such as Alzheimer's disease, which is characterized by ß-amyloid abnormalities and impaired cognitive function. Microglial exosomes have been reported to be involved in the transportation, distribution, and clearance of ß-amyloid in Alzheimer's disease. However, their impacts on the development of neurodegeneration after rmTBI are not yet known. The role of miRNAs in microglial exosomes on regulating post-traumatic neurodegeneration was investigated in the present study. We demonstrated that miR-124-3p level in microglial exosomes from injured brain was significantly altered in the acute, sub-acute, and chronic phases after rmTBI. In in vitro experiments, microglial exosomes with upregulated miR-124-3p (EXO-124) alleviated neurodegeneration in repetitive scratch-injured neurons. The effects were exerted by miR-124-3p targeting Rela, an inhibitory transcription factor of ApoE that promotes the ß-amyloid proteolytic breakdown, thereby inhibiting ß-amyloid abnormalities. In mice with rmTBI, the intravenously injected microglial exosomes were taken up by neurons in injured brain. Besides, miR-124-3p in the exosomes was transferred into hippocampal neurons and alleviated neurodegeneration by targeting the Rela/ApoE signaling pathway. Consequently, EXO-124 treatments improved the cognitive outcome after rmTBI, suggesting a promising therapeutic strategy for future clinical translation.


Assuntos
Concussão Encefálica/etiologia , Concussão Encefálica/metabolismo , Cognição , Exossomos/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Doenças Neurodegenerativas/etiologia , Animais , Apolipoproteínas E/metabolismo , Concussão Encefálica/patologia , Concussão Encefálica/reabilitação , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/reabilitação , Neurônios/metabolismo , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
6.
Carcinogenesis ; 41(3): 274-283, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31605605

RESUMO

Polymerase I and transcript release factor (PTRF)/Cavin1 regulates RNA polymerase I during transcription and plays a critical role in endocytosis. Abnormal expressions of PTRF were detected in multiple cancers according to increasing research. PTRF has been showed to involve in the formation and secretion of exosomes and can be detected in the exosomes, which suggests that PTRF would be a potential biomarker for diagnosis of clear cell renal cell carcinoma (ccRCC) using urine samples. Approximately 50-90% of ccRCC cases suffered abnormal epidermal growth factor receptor (EGFR), which activates a variety of signaling pathways, including the mitogen-activated protein kinase/extracellular signal-regulated kinase and Phosphoinositide 3-Kinase/Akt pathway. According to bioinformatic analysis of gene expression arrays of kidney clear cell carcinoma from The Cancer Genome Atlas, we found SHC1 was significantly overexpressed in high-grade ccRCC and correlated to poor prognosis, and also SHC1 was annotated in extracellular matrix process, which was regulated by EGFR. Further studies showed that the expression of PTRF was regulated by SHC1 through EGFR-Phosphoinositide 3-Kinase/Akt pathway. PTRF was detected in the exosomes isolated from ccRCC patients' urine and ccRCC cancer cells culture medium. It suggested that the abnormal SHC1-increased PTRF, which is detected in exosomes from urine, would be a potential marker for ccRCC diagnose and treatment.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Ligação a RNA/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/urina , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Receptores ErbB/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Proteínas de Ligação a RNA/urina , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/urina
8.
Nano Lett ; 19(11): 7662-7672, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31593471

RESUMO

Tumor heterogeneity has been one of the most important factors leading to the failure of conventional cancer therapies due to the accumulation of genetically distinct tumor-cell subpopulations during the tumor development process. Due to the diversity of genetic mutations during tumor growth, combining the use of multiple drugs has only achieved limited success in combating heterogeneous tumors. Herein, we report a novel antitumor strategy that effectively addresses tumor heterogeneity by using a CRISPR/Cas9-based nanoRNP carrying a combination of sgRNAs. Such nanoRNP is synthesized from Cas9 ribonucleoprotein, any combinations of required sgRNAs, and a rationally designed responsive polymer that endows nanoRNP with high circulating stability, enhanced tumor accumulation, and the efficient gene editing in targeted tumor cells eventually. By carrying a combination of sgRNAs that targets STAT3 and RUNX1, the nanoRNP exhibited efficient gene expression disruptions on a heterogeneous tumor model with two subsets of cells whose proliferations were sensitive to the reduced expression of STAT3 and RUNX1, respectively, leading to the effective growth inhibition of the heterogeneous tumor. Considering the close relationship between tumor heterogeneity and cancer progression, resistance to therapy, and recurrences, nanoRNP provides a feasible strategy to overcome tumor heterogeneity in the development of more advanced cancer therapy against malignant tumors.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Nus , Nanomedicina/métodos , Neoplasias/genética , Neoplasias/patologia , Fator de Transcrição STAT3/genética
9.
Nano Lett ; 19(2): 674-683, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30444372

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible brain disorder. Recent studies revealed the pivotal role of ß-amyloid (Aß) in AD. However, there is no conclusive indication that the existing therapeutic strategies exerted any effect on the mitigation of Aß-induced neurotoxicity and the elimination of Aß aggregates simultaneously in vivo. Herein, we developed a novel nanocomposite that can eliminate toxic Aß aggregates and mitigate Aß-induced neurotoxicity in AD mice. This nanocomposite was designed to be a small-sized particle (14 ± 4 nm) with Aß-binding peptides (KLVFF) integrated on the surface. The nanocomposite was prepared by wrapping a protein molecule with a cross-linked KLVFF-containing polymer layer synthesized by in situ polymerization. The presence of the nanocomposite remarkably changed the morphology of Aß aggregates, which led to the formation of Aß/nanocomposite coassembled nanoclusters instead of Aß oligomers. With the reduction of the pathological Aß oligomers, the nanocomposites attenuated the Aß-induced neuron damages, regained endocranial microglia's capability to phagocytose Aß, and eventually protected hippocampal neurons against apoptosis. Thus, we anticipate that the small-sized nanocomposite will potentially offer a feasible strategy in the development of novel AD treatments.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Nanocompostos/uso terapêutico , Nanomedicina/métodos , Peptídeos/uso terapêutico , Agregação Patológica de Proteínas/terapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/isolamento & purificação , Animais , Modelos Animais de Doenças , Camundongos , Modelos Moleculares , Nanocompostos/química , Nanocompostos/ultraestrutura , Peptídeos/química , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
10.
Carcinogenesis ; 40(8): 956-964, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30809632

RESUMO

Long non-coding RNAs (lncRNAs) have been reported to play important roles in glioma; however, most of them promote glioma progression. We constructed a competing endogenous (ceRNA) network based on the Chinese Glioma Genome Atlas dataset, and lncRNA hect domain and RLD 2 pseudogene 2 (HERC2P2) is the core of this network. Highly connected genes in the ceRNA network classified the glioma patients into three clusters with significantly different survival rates. The expression of HERC2P2 is positively correlated with survival and negatively correlated with clinical grade. Cell colony formation, Transwell and cell scratch tests were performed to evaluate the role of HERC2P2 in glioblastoma growth. Furthermore, we overexpressed HERC2P2 in U87 cells and established a mouse intracranial glioma model to examine the function of HERC2P2 in vivo. In conclusion, we identified a lncRNA with tumor suppressor functions in glioma that could be a potential biomarker for glioma patients.


Assuntos
Biomarcadores Tumorais/genética , Glioma/genética , Prognóstico , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Factuais , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Genes Supressores de Tumor , Glioma/patologia , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , MicroRNAs/genética , Taxa de Sobrevida
11.
Mol Cancer ; 17(1): 32, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448937

RESUMO

Intratumor heterogeneity of tumor clones and an immunosuppressive microenvironment in cancer ecosystems contribute to inherent difficulties for tumor treatment. Recently, chimeric antigen receptor (CAR) T-cell therapy has been successfully applied in the treatment of B-cell malignancies, underscoring its great potential in antitumor therapy. However, functional challenges of CAR-T cell therapy, especially in solid tumors, remain. Here, we describe cancer-immunity phenotypes from a clonal-stromal-immune perspective and elucidate mechanisms of T-cell exhaustion that contribute to tumor immune evasion. Then we assess the functional challenges of CAR-T cell therapy, including cell trafficking and infiltration, targeted-recognition and killing of tumor cells, T-cell proliferation and persistence, immunosuppressive microenvironment and self-control regulation. Finally, we delineate tumor precision informatics and advancements in engineered CAR-T cells to counteract inherent challenges of the CAR-T cell therapy, either alone or in combination with traditional therapeutics, and highlight the therapeutic potential of this approach in future tumor precision treatment.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Edição de Genes , Engenharia Genética/métodos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Medicina de Precisão , Receptores de Antígenos Quiméricos/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral
12.
Mol Cancer ; 17(1): 5, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29325547

RESUMO

BACKGROUND: The communication between carcinoma associated fibroblasts (CAFs) and cancer cells facilitate tumor metastasis. In this study, we further underlying the epigenetic mechanisms of CAFs feed the cancer cells and the molecular mediators involved in these processes. METHODS: MCF-7 and MDA-MB-231 cells were treated with CAFs culture conditioned medium, respectively. Cytokine antibody array, enzyme-linked immunosorbent assay, western blotting and immunofluorescence were used to identify the key chemokines. Chromatin immunoprecipitation and luciferase reporter assay were performed to explore the transactivation of target LncRNA by CAFs. A series of in vitro assays was performed with RNAi-mediated knockdown to elucidate the function of LncRNA. An orthotopic mouse model of MDA-MB-231 was conducted to confirm the mechanism in vivo. RESULTS: Here we reported that TGF-ß1 was top one highest level of cytokine secreted by CAFs as revealed by cytokine antibody array. Paracrine TGF-ß1 was essential for CAFs induced EMT and metastasis in breast cancer cells, which is a crucial mediator of the interaction between stromal and cancer cells. CAF-CM significantly enhanced the HOTAIR expression to promote EMT, whereas treatment with small-molecule inhibitors of TGF-ß1 attenuated the activation of HOTAIR. Most importantly, SMAD2/3/4 directly bound the promoter site of HOTAIR, located between nucleotides -386 and -398, -440 and -452, suggesting that HOTAIR was a directly transcriptional target of SMAD2/3/4. Additionally, CAFs mediated EMT by targeting CDK5 signaling through H3K27 tri-methylation. Depletion of HOTAIR inhibited CAFs-induced tumor growth and lung metastasis in MDA-MB-231 orthotopic animal model. CONCLUSIONS: Our findings demonstrated that CAFs promoted the metastatic activity of breast cancer cells by activating the transcription of HOTAIR via TGF-ß1 secretion, supporting the pursuit of the TGF-ß1/HOTAIR axis as a target in breast cancer treatment.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Epigênese Genética , Neoplasias/genética , Neoplasias/metabolismo , Comunicação Parácrina , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Metástase Neoplásica , Neoplasias/patologia , Prognóstico , RNA Longo não Codificante/genética , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/metabolismo
13.
Cancer Sci ; 109(9): 2717-2733, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30047193

RESUMO

Dysregulation of the cell cycle is a key indicator of tumors, including lung cancer. Recently, the study of cell cycle inhibitors has made great progress in relation to lung cancer. However, the question of what kinds of patients can use cell cycle inhibitors has plagued us. Therefore, seeking an accurate and convenient marker for the abnormal cell cycle in lung cancer is very important. In the present research, we showed that lncRNA HOTAIR is an optimal indicator of cell cycle dysregulation in lung cancer. In the present study, we investigated HOTAIR-specific expression in lung primary tumor samples by analyzing the TCGA public database and 67 pairs of patients' tissues collected from our department. Through the TCGA public database KEGG analysis, HOTAIR correlates with the cell cycle pathway. We identified that HOTAIR and its 2 segments, HOTAIR3' and HOTAIR5', promote the cell cycle passing through the restriction point during G1-S phase by regulating the Rb-E2F pathway and influence non-small-cell lung cancer cell proliferation, migration and invasion through epithelial-mesenchymal transition (EMT) and the ß-catenin pathway in vitro and vivo. Finally, we showed that the high expression of HOTAIR was associated with resistance to gefitinib through the dysregulated cell cycle. In conclusion, HOTAIR could be an ideal indicator of cell cycle dysregulation and guide the use of cell cycle inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição E2F/metabolismo , Transição Epitelial-Mesenquimal/genética , Gefitinibe , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Quinazolinas/farmacologia , Proteína do Retinoblastoma/metabolismo , Transplante Heterólogo , beta Catenina/metabolismo
14.
Genome Res ; 24(11): 1765-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25135958

RESUMO

Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Glioma/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Adolescente , Adulto , Idoso , Antineoplásicos Alquilantes , Western Blotting , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Quimiorradioterapia , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/secundário , Glioma/patologia , Glioma/terapia , Células HEK293 , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Temozolomida , Translocação Genética , Adulto Jovem
15.
RNA ; 19(4): 552-60, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23431408

RESUMO

MicroRNAs (miRNAs) are single-stranded, 18- to 23-nt RNA molecules that function as regulators of gene expression. Previous studies have shown that microRNAs play important roles in human cancers, including gliomas. Here, we found that expression levels of miR-181b were decreased in gliomas, and we identified IGF-1R as a novel direct target of miR-181b. MiR-181b overexpression inhibited cell proliferation, migration, invasion, and tumorigenesis by targeting IGF-1R and its downstream signaling pathways, PI3K/AKT and MAPK/ERK1/2. Overexpression of IGF-1R rescued the inhibitory effects of miR-181b. In clinical specimens, IGF-1R was overexpressed, and its protein levels were inversely correlated with miR-181b expression. Taken together, our results indicate that miR-181b functions in gliomas to suppress growth by targeting the IGF-1R oncogene and that miR-181b may serve as a novel therapeutic target for gliomas.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica , Glioma/metabolismo , Glioma/patologia , MicroRNAs/metabolismo , Receptor IGF Tipo 1/metabolismo , Inibidores da Angiogênese/metabolismo , Animais , Movimento Celular , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Transdução de Sinais
16.
Nucleic Acids Res ; 41(22): e203, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24194606

RESUMO

Glioma is the most common and fatal primary brain tumour with poor prognosis; however, the functional roles of miRNAs in glioma malignant progression are insufficiently understood. Here, we used an integrated approach to identify miRNA functional targets during glioma malignant progression by combining the paired expression profiles of miRNAs and mRNAs across 160 Chinese glioma patients, and further constructed the functional miRNA-mRNA regulatory network. As a result, most tumour-suppressive miRNAs in glioma progression were newly discovered, whose functions were widely involved in gliomagenesis. Moreover, three miRNA signatures, with different combinations of hub miRNAs (regulations≥30) were constructed, which could independently predict the survival of patients with all gliomas, high-grade glioma and glioblastoma. Our network-based method increased the ability to identify the prognostic biomarkers, when compared with the traditional method and random conditions. Hsa-miR-524-5p and hsa-miR-628-5p, shared by these three signatures, acted as protective factors and their expression decreased gradually during glioma progression. Functional analysis of these miRNA signatures highlighted their critical roles in cell cycle and cell proliferation in glioblastoma malignant progression, especially hsa-miR-524-5p and hsa-miR-628-5p exhibited dominant regulatory activities. Therefore, network-based biomarkers are expected to be more effective and provide deep insights into the molecular mechanism of glioma malignant progression.


Assuntos
Neoplasias Encefálicas/genética , Redes Reguladoras de Genes , Glioma/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/metabolismo , Criança , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Genômica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioma/metabolismo , Glioma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Adulto Jovem
17.
Sheng Li Xue Bao ; 67(1): 83-9, 2015 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-25672630

RESUMO

The aim of the present study was to investigate the regulatory effects of histone methylation modifications on the expression of miR-200c, as well as invasion and migration of gastric carcinoma cells. Gastric carcinoma cell line, MGC-803, were treated by 2.5 µmol/L histone methyltransferase inhibitor, DZNep. The expression of miR-200c was detected by real-time quantitative PCR (qRT-PCR). The epithelial-mesenchymal transition (EMT) indicators (ZEB1/2 and E/N-cadherin), EZH2, EED, SUZ12 and H3K27me3 expressions were detected by Western blot. Cell migration and invasion abilities were detected by Transwell and scratch tests. The result showed that, compared with DMSO (control) group, DZNep significantly increased the expression of miR-200c to about 2.1 times, inhibited ZEB1, ZEB2, and N-cadherin expressions, and activated E-cadherin expression; Also, DZNep decreased the protein expressions of EZH2, EED, SUZ12 and H3K27me3; Moreover, DZNep could inhibit MGC-803 cell invasive and migrative abilities, as well as MMP9 expression. These results suggest DZNep raises miR-200c expression to delay the invasion and migration of gastric carcinoma cells, and the underlying mechanisms involve the regulations of EMT-related proteins and polycomb repressive complex 2.


Assuntos
Adenosina/análogos & derivados , Movimento Celular/efeitos dos fármacos , MicroRNAs/metabolismo , Proteínas Metiltransferases/antagonistas & inibidores , Adenosina/farmacologia , Caderinas/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
18.
Mol Cancer ; 13: 63, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24650032

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. METHODS: miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. RESULTS: In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the ß-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. CONCLUSIONS: miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/genética , Glioblastoma/genética , MicroRNAs/genética , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Imunofluorescência , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transfecção , Proteína Supressora de Tumor Von Hippel-Lindau/genética
19.
Cancer Immunol Res ; 12(5): 514, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38568780

RESUMO

Patients with gliomas often experience mental health problems, such as depression and anxiety, that lead to worsening tumor progression and shortened survival. In this issue, Wang and colleagues report a novel mechanism underlying this, finding that chronic stress reduces secretion of the chemokine CCL3, which leads to an immunosuppressive glioma microenvironment. CCL3 administration enhances the infiltration of antitumor immune cells, providing rationale for a potential new therapeutic approach. See related article by Wang et al., p. 516 (4).


Assuntos
Quimiocina CCL3 , Glioma , Microambiente Tumoral , Glioma/imunologia , Glioma/patologia , Glioma/metabolismo , Humanos , Microambiente Tumoral/imunologia , Quimiocina CCL3/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Animais
20.
Clin Cancer Res ; 30(6): 1073-1075, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38170191

RESUMO

Crosstalk between tumor cells and peritumoral cells contributes to immunosuppressive microenvironment formation in glioblastomas (GBM). A recent study revealed that glioma stem cells activated neuronal activity to promote microglial M2 polarization, leading to GBM progression, which could be pharmacologically blocked by levetiracetam, providing a practical strategy for GBM immunotherapy. See related article by Guo et al., p. 1160.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Microglia/patologia , Levetiracetam/farmacologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA