RESUMO
BACKGROUND: Aptamers, which are biomaterials comprised of single-stranded DNA/RNA that form tertiary structures, have significant potential as next-generation materials, particularly for drug discovery. The systematic evolution of ligands by exponential enrichment (SELEX) method is a critical in vitro technique employed to identify aptamers that bind specifically to target proteins. While advanced SELEX-based methods such as Cell- and HT-SELEX are available, they often encounter issues such as extended time consumption and suboptimal accuracy. Several In silico aptamer discovery methods have been proposed to address these challenges. These methods are specifically designed to predict aptamer-protein interaction (API) using benchmark datasets. However, these methods often fail to consider the physicochemical interactions between aptamers and proteins within tertiary structures. RESULTS: In this study, we propose AptaTrans, a pipeline for predicting API using deep learning techniques. AptaTrans uses transformer-based encoders to handle aptamer and protein sequences at the monomer level. Furthermore, pretrained encoders are utilized for the structural representation. After validation with a benchmark dataset, AptaTrans has been integrated into a comprehensive toolset. This pipeline synergistically combines with Apta-MCTS, a generative algorithm for recommending aptamer candidates. CONCLUSION: The results show that AptaTrans outperforms existing models for predicting API, and the efficacy of the AptaTrans pipeline has been confirmed through various experimental tools. We expect AptaTrans will enhance the cost-effectiveness and efficiency of SELEX in drug discovery. The source code and benchmark dataset for AptaTrans are available at https://github.com/pnumlb/AptaTrans .
Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Software , Redes Neurais de Computação , Algoritmos , LigantesRESUMO
The control of bacterial pathogens, including Edwardsiella piscicida, in the aquaculture industry has high economic importance. This study aimed to identify a potential live vaccine candidate against E. piscicida infection to minimize the side effects and elicit immunity in the host. This study evaluated the virulence factors of E. piscicida CK108, with a special focus on the flagella. E. piscicida has two important homologous flagellin genes, namely flagellin-associated protein (fap) and flagellin domain-containing protein (fdp). CK226 (Δfap), CK247 (Δfdp) and CK248 (Δfap, fdp) mutant strains were constructed. Both CK226 and CK247 displayed decreased length and thickness of flagellar filaments, resulting in reduced bacterial swimming motility, while CK248 was non-motile as it lacked flagella. The loss of flagella and decreased motility was expected to decrease the pathogenicity of CK248. However, the median lethal dose (LD50 ) of CK248 against zebrafish was lower than those of the wild-type, CK226 and CK247 strains. The protective immunity and cytokine gene expression levels in the CK248-infected zebrafish were lower than those in the wild type-infected zebrafish. In conclusion, Fap and Fdp are essential for flagella formation and motility, and for stimulating fish immune response, which can be utilized as a potential adjuvants for E. piscicida vaccination.
Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Proteínas de Bactérias , Edwardsiella/genética , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Flagelina/genética , Vacinas Atenuadas , Peixe-ZebraRESUMO
The mycobacterial SenX3-RegX3 two-component system consists of the SenX3 sensor histidine kinase and its cognate RegX3 response regulator. This system is a phosphorelay-based regulatory system involved in sensing environmental Pi levels and induction of genes required for Pi acquisition under Pi-limiting conditions. Here we demonstrate that overexpression of the kinase domain of Mycobacterium tuberculosis PknB (PknB-KDMtb) inhibits the transcriptional activity of RegX3 of both M. tuberculosis and Mycobacterium smegmatis (RegX3Mtb and RegX3Ms, respectively). Mass spectrometry results, along with those of in vitro phosphorylation and complementation analyses, revealed that PknB kinase activity inhibits the transcriptional activity of RegX3Mtb through phosphorylation events at Thr-100, Thr-191, and Thr-217. Electrophoretic mobility shift assays disclosed that phosphorylation of Thr-191 and Thr-217 abolishes the DNA-binding ability of RegX3Mtb and that Thr-100 phosphorylation likely prevents RegX3Mtb from being activated through conformational changes induced by SenX3-mediated phosphorylation. We propose that the convergence of the PknB and SenX3-RegX3 signaling pathways might enable mycobacteria to integrate environmental Pi signals with the cellular replication state to adjust gene expression in response to Pi availability.
Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Fosforilação , Fosfotransferases/genética , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/fisiologia , Rifabutina/metabolismo , Transdução de Sinais/genéticaRESUMO
A total of three bacteria isolated from activated sludge of a wastewater treatment plant were found to reduce selenite to elemental selenium nanoparticles as both amorphous nanospheres and monoclinic nanocrystals. The three isolated strains, which are potential candidates for bioremediation of selenite-contaminated water sources, were designated as Citrobacter sp. NVK-2, Providencia sp. NVK-2A, and Citrobacter sp. NVK-6 based on 16S rRNA sequencing. Despite belonging to the same genus, the kinetics of selenite reduction by strain NVK-2 (Vmaxâ¯=â¯58.82⯵Mâ¯h-1, Kmâ¯=â¯3737.12⯵M) completely differed from that of strain NVK-6 (Vmaxâ¯=â¯19.23⯵Mâ¯h-1, Kmâ¯=â¯1300.17⯵M). The selenite reduction rate by strain NVK-2A (Vmaxâ¯=â¯9.26⯵Mâ¯h-1, Kmâ¯=â¯3044.73⯵M) was the slowest among the investigated microorganisms. The microbial selenite reduction rates according to various organic sources indicated that simple organic sources such as acetate and lactate were better than more complex organic sources such as propionate, butyrate, and glucose for selenite removal. Interestingly, the selenite reduction rate was significantly enhanced when the organic source was strategically divided into small portions and consecutively supplied to the culture.
Assuntos
Selênio , Esgotos , Bactérias , Cinética , RNA Ribossômico 16S , Ácido SeleniosoRESUMO
Here we demonstrated that the inhibition of electron flux through the respiratory electron transport chain (ETC) by either the disruption of the gene for the major terminal oxidase (aa3 cytochrome c oxidase) or treatment with KCN resulted in the induction of ald encoding alanine dehydrogenase in Mycobacterium smegmatis A decrease in functionality of the ETC shifts the redox state of the NADH/NAD+ pool toward a more reduced state, which in turn leads to an increase in cellular levels of alanine by Ald catalyzing the conversion of pyruvate to alanine with the concomitant oxidation of NADH to NAD+ The induction of ald expression under respiration-inhibitory conditions in M. smegmatis is mediated by the alanine-responsive AldR transcriptional regulator. The growth defect of M. smegmatis by respiration inhibition was exacerbated by inactivation of the ald gene, suggesting that Ald is beneficial to M. smegmatis in its adaptation and survival under respiration-inhibitory conditions by maintaining NADH/NAD+ homeostasis. The low susceptibility of M. smegmatis to bcc1 complex inhibitors appears to be, at least in part, attributable to the high expression level of the bd quinol oxidase in M. smegmatis when the bcc1-aa3 branch of the ETC is inactivated.IMPORTANCE We demonstrated that the functionality of the respiratory electron transport chain is inversely related to the expression level of the ald gene encoding alanine dehydrogenase in Mycobacterium smegmatis Furthermore, the importance of Ald in NADH/NAD+ homeostasis during the adaptation of M. smegmatis to severe respiration-inhibitory conditions was demonstrated in this study. On the basis of these results, we propose that combinatory regimens including both an Ald-specific inhibitor and respiration-inhibitory antitubercular drugs such as Q203 and bedaquiline are likely to enable a more efficient therapy for tuberculosis.
Assuntos
Alanina Desidrogenase/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Consumo de Oxigênio/fisiologia , Alanina Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , NAD/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologiaRESUMO
Edwardsiella piscicida is a Gram-negative pathogen that generally causes lethal septicemia in marine and freshwater fish. We generated a E. piscicida CK216 Δcrp mutant to investigate various biological roles related to this organism, including pathogenesis. Lack of Crp in CK216 was demonstrated by immunoblotting using a Crp-specific antibody. Compared to the parental strain, the mutant exhibited changes in three biochemical phenotypes, including ornithine decarboxylation, citrate utilization, and H2S production. Complementation of crp deletion in trans rescued the phenotype of the parental strain. This study proved that hemolytic activity in E. piscicida is controlled by Crp. In addition, significantly reduced motility of E. piscicida CK216 was observed, which resulted from a lack of flagella synthesis. To examine the virulence in fish, E. piscicida cells were injected into the goldfish (Carassius auratus) via intraperitoneal route. The LD50 of CK216 was 9.25 × 108 CFU, while that of the CK108 parental strain was 9.24 × 105 CFU, attenuated 1000 fold in goldfish. Fish immunized with CK216 elicited IgM responses. Moreover, 80% of goldfish immunized with 1 × 106 CFU survived after administration of a lethal dose (1 × 107 CFU) of virulent E. piscicida CK41, suggesting the potential for E. piscicida CK216 to serve as a live attenuated vaccine in aquaculture.
Assuntos
Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Edwardsiella , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Carpa Dourada , Animais , Proteínas de Bactérias/imunologia , Proteína Receptora de AMP Cíclico/imunologia , Edwardsiella/genética , Edwardsiella/imunologia , Edwardsiella/patogenicidade , Infecções por Enterobacteriaceae/imunologia , Mutação , Virulência/genéticaRESUMO
Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.
Assuntos
Parvovirus H-1 , Lectinas/metabolismo , Terapia Viral Oncolítica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Receptor de Interferon alfa e beta/metabolismo , Apoptose , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas/antagonistas & inibidores , Lectinas/genética , Neoplasias Pancreáticas/genética , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/patologia , RNA Interferente Pequeno/genética , Receptor de Interferon alfa e beta/genética , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/genética , TYK2 Quinase/metabolismoRESUMO
BACKGROUND: Animal behavioral responses have been recently established as a suitable tool for detecting contaminants in the environment for risk assessment in situ. In this study, we observed movement behavior of zebrafish (Danio rerio) before and after infection with Edwardsiella tarda CK41 for 3 days until death. METHODS: Infection status of zebrafish was confirmed through PCR and colonization assay as time progressed and lesion development in the tails of zebrafish was also examined. Movement behaviors in response to bacterial infection were patterned by self-organizing map (SOM) based on movement parameters, including speed (mm/s), acceleration (mm/s (2) ), stop duration (t), stop number (n), locomotory rate (mm/s), turning rate (rad/s), and meander (rad/mm). RESULTS: According to SOM result, clusters were identified firstly according to time and secondly according to infection. Two movement patterns were observed in the early period of infection: one group with minimum turning rate and meander (i.e., stiff movement) and the other group with maximum strop number. Late infection was characterized by long stop duration. CONCLUSION: SOM was suitable for extracting complex behavioral data and thus can serve as a referencing system for diagnosing disease development in order to reveal the mechanism of the infection process.
Assuntos
Comportamento Animal , Edwardsiella tarda , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Peixe-Zebra , Animais , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/etiologia , Atividade MotoraRESUMO
Magnesium dilactate is increasingly sought after for its applications in the pharmaceutical, food, and dietary supplement industries due to its essential role in various physiological processes. This study explores a sustainable method for synthesizing magnesium dilactate through lactic acid fermentation using tomato juice, coupling the neutralization of lactic acid with hydrated magnesium carbonate hydroxide. Utilizing the lactic acid bacteria Lactobacillus paracasei and Lactobacillus plantarum, fermentation was optimized in a 50% diluted MRS medium supplemented with glucose and tomato juice supplemented with glucose, yielding a maximum lactate concentration of 107 g/L. Notably, fermentation in diluted media proved more effective than in undiluted tomato juice, highlighting the inhibitory effects of certain organic compounds and the physical nature of the original tomato juice. Post-fermentation, magnesium lactate was crystallized, achieving high recovery rates of up to 95.9%. Characterization of the product through X-ray diffraction and scanning electron microscopy confirmed its crystalline purity. This research underscores the viability of tomato juice as a fermentation substrate, promoting the valorization of agricultural by-products while providing an eco-friendly alternative to traditional chemical synthesis methods for magnesium dilactate production.
RESUMO
Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis. Moreover, they inhibited spleen and lymph node enlargement and showed fewer infiltrated mast cells in the epidermis and dermis through toluidine-blue staining. Additionally, they led to a lower IgE titer in mouse sera as determined by ELISA, compared to vehicle treatment. Analyzing skin tissue from the mice revealed decreased transcript levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), IL-4, iNOS, and COX-2, compared to control mice. Simultaneously, the compounds impeded the activation of inflammation-related signaling molecules such as JNK, p38 MAPK, and NF-κB in the mouse skin. In summary, these findings suggest that BMDA and DMMA hold the potential to be developed as a novel treatment for healing inflammatory AD.
Assuntos
Dermatite Atópica , Alho , Anidridos Maleicos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Pele/patologia , Citocinas , Aminas/farmacologia , NF-kappa B/farmacologia , Camundongos Endogâmicos BALB CRESUMO
Expression of thin aggregative fimbriae (Agf) in Salmonella, which is responsible for bacterial cell adhesion to surfaces, aggregation, and formation of biofilms, is regulated by a complex mechanism. In order to identify gene(s) involved in the expression of Agf, the TnphoA transposon was introduced into Salmonella typhimurium χ8505 for random mutagenesis. Colonies showing a change from wrinkly-rough morphology to the smooth form were screened for candidates. Through multiple selection processes, a mutant, named S. typhimurium CK167 was selected as the final candidate. Analyses of the nucleotide sequences of TnphoA insertion site identified the insertion in rpoE gene. S. typhimurium CK178, a defined rpoE deletion mutant on χ8505, exhibited the same colony morphology as seen in CK167. The S. typhimurium CK178 strain expressed significantly reduced amounts of AgfD and showed modulated biofilm formation, demonstrating the role of RpoE in AgfD expression. To the best of our knowledge, this is the first report demonstrating that RpoE acts as a regulator in the expression of Agf in Salmonella.
Assuntos
Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Salmonella typhimurium/genética , Fator sigma/fisiologia , Biofilmes , Deleção de Genes , Mutação , Salmonella typhimurium/fisiologia , Fator sigma/genéticaRESUMO
Edwardsiella tarda causes an infectious fish disease called edwardsiellosis. Several outer membrane proteins (OMPs) are associated with virulence factors and are attractive as vaccine candidates. In this study, 4 immuno-reactive OMPs of E. tarda were detected using anti-sera from flounder infected with E. tarda. Using matrix-assisted laser desorption/ionization mass spectrometry analyses, 2 of the 4 OMPs were identified as OmpA and murein lipoprotein (Lpp), which are highly conserved surface proteins in gram-negative bacteria. For further characterization of these surface proteins, we generated ompA- and lpp-inactivated mutants by insertion of a kanamycin cassette in the corresponding genes, and named these mutants E. tarda CK99 and CK164, respectively. As expected, immuno-reactive OmpA and Lpp proteins were absent in E. tarda CK99 and CK164, respectively, confirming that OmpA and Lpp are antigenic surface proteins. Interestingly, the LD(50) value of E. tarda CK164 in fish (2.0 × 10(8) colony-forming unit [CFU]/fish) was greater than that of the parental strain (3.0 × 10(7) CFU/fish). The LD(50) of E. tarda CK99 did not differ from that of its parental strain. After administering attenuated E. tarda CK164 to fish, we monitored the E. tarda-specific immune response profile. We observed that the E. tarda-specific serum IgM titer increased in a time-dependent manner, and was much higher than the value observed after the administration of a heat-killed E. tarda control. Moreover, fish vaccinated with E. tarda CK164 were 100% protected when challenged by CK41, a pathogenic strain. Our results suggest that E. tarda CK164 can potentially be used for developing an effective live attenuated vaccine for edwardsiellosis that can be applied in the aquaculture industry.
Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Edwardsiella tarda/genética , Edwardsiella tarda/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Peptidoglicano/genética , Animais , Antígenos de Bactérias/imunologia , Aquicultura , Proteínas da Membrana Bacteriana Externa/imunologia , Primers do DNA/genética , Edwardsiella tarda/patogenicidade , Eletroforese em Gel de Poliacrilamida , Infecções por Enterobacteriaceae/imunologia , Ensaio de Imunoadsorção Enzimática , Doenças dos Peixes/microbiologia , Carpa Dourada , Immunoblotting , Imunoglobulina M/sangue , Dose Letal Mediana , Peptidoglicano/imunologia , Plasmídeos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , VirulênciaRESUMO
The enhancement of the electrical conductivity by doping is important in hematite (α-Fe(2)O(3)) photoanodes for efficient solar water oxidation. However, in spite of many successful demonstrations using extrinsic dopants, such as Sn, Ti, and Si, the achieved photocurrent is still lower than the practical requirement. There is still lack of our understanding of how intrinsic oxygen defects can change the photocurrent and interact with the extrinsic dopants. In this study, we systematically investigate the interplay of oxygen vacancies and extrinsic Sn dopants in the context of photoanodic properties. As a result, we demonstrate that the controlled generation of oxygen vacancies can activate the photoactivity of pure hematite remarkably and further enhance the Sn doping effects synergistically. Furthermore, the correlated behavior of oxygen vacancies and Sn dopants is closely linked to the variation of electrical conductance and results in the optimum concentration region to show the high photocurrent and low onset voltage.
RESUMO
The toxic element arsenic (As) has become the major focus of global research owing to its harmful effects on human health, resulting in the establishment of several guidelines to prevent As contamination. The widespread industrial use of As has led to its accumulation in the environment, increasing the necessity to develop effective remediation technologies. Among various treatments, such as chemical, physical, and biological treatments, used to remediate As-contaminated environments, biological methods are the most economical and eco-friendly. Microbial oxidation of arsenite (As(III)) to arsenate (As(V)) is a primary detoxification strategy for As remediation as it reduces As toxicity and alters its mobility in the environment. Here, we evaluated the self-detoxification potential of microcosms isolated from Nakdong River water by investigating the autotrophic and heterotrophic oxidation of As(III) to As(V). Experimental data revealed that As(III) was oxidized to As(V) during the autotrophic and heterotrophic growth of river water microcosms. However, the rate of oxidation was significantly higher under heterotrophic conditions because of the higher cell growth and density in an organic-matter-rich environment compared to that under autotrophic conditions without the addition of external organic matter. At an As(III) concentration > 5 mM, autotrophic As(III) oxidation remained incomplete, even after an extended incubation time. This inhibition can be attributed to the toxic effect of the high contaminant concentration on bacterial growth and the acidification of the growth medium with the oxidation of As(III) to As(V). Furthermore, we isolated representative pure cultures from both heterotrophic- and autotrophic-enriched cultures. The new isolates revealed new members of As(III)-oxidizing bacteria in the diversified bacterial community. This study highlights the natural process of As attenuation within river systems, showing that microcosms in river water can detoxify As under both organic-matter-rich and -deficient conditions. Additionally, we isolated the bacterial strains HTAs10 and ATAs5 from the microcosm which can be further investigated for potential use in As remediation systems. Our findings provide insights into the microbial ecology of As(III) oxidation in river ecosystems and provide a foundation for further investigations into the application of these bacteria for bioremediation.
RESUMO
Circular RNA (circRNA) is a non-coding RNA with a covalently closed loop structure and usually more stable than messenger RNA (mRNA). However, coding sequences (CDSs) following an internal ribosome entry site (IRES) in circRNAs can be translated, and this property has been recently utilized to produce proteins as novel therapeutic tools. However, it is difficult to produce large proteins from circRNAs because of the low circularization efficiency of lengthy RNAs. In this study, we report that we successfully synthesized circRNAs with the splint DNA ligation method using RNA ligase 1 and the splint DNAs, which contain complementary sequences to both ends of precursor linear RNAs. This method results in more efficient circularization than the conventional enzymatic method that does not use the splint DNAs, easily generating circRNAs that express relatively large proteins, including IgG heavy and light chains. Longer splint DNA (42 nucleotide) is more effective in circularization. Also, the use of splint DNAs with an adenine analog, 2,6-diaminopurine (DAP), increase the circularization efficiency presumably by strengthening the interaction between the splint DNAs and the precursor RNAs. The splint DNA ligation method requires 5 times more splint DNA than the precursor RNA to efficiently produce circRNAs, but our modified splint DNA ligation method can produce circRNAs using the amount of splint DNA which is equal to that of the precursor RNA. Our modified splint DNA ligation method will help develop novel therapeutic tools using circRNAs, to treat various diseases and to develop human and veterinary vaccines.
RESUMO
As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1ß production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA.
RESUMO
Edwardsiella tarda, an enteric gram negative bacterium, infects a wide range of fish and causes a systemic fish disease called edwardsiellosis. E. tarda CK41, isolated from Japanese flounder diagnosed with edwardsiellosis, has exhibited a high degree of resistance to multiple antibiotics, including kanamycin, tetracycline, streptomycin, among others. As the bacterial antibiotic-resistance genes are usually contained in plasmids, we hypothesized that E. tarda CK41 may harbor one or more plasmids for antibiotic resistance. We showed the existence of plasmids in E. tarda CK41, and the size of the plasmid, designated as pCK41, was estimated to be approximately 70 kb. Escherichia coli DH5α transformed by the pCK41 plasmid exhibited an antibiotic-resistance phenotype against kanamycin (30 µg/mL), tetracycline (30 µg/mL), and streptomycin (10 µg/mL), indicating the existence of at least 3 antibiotic-resistance genes in pCK41. Through a procedure for pCK41 plasmid curing, a plasmid-cured strain, designated as E. tarda CK108, was identified, which was unable to grow in the presence of either kanamycin or tetracycline. As virulence-associated genes are occasionally encoded in bacterial plasmids, we examined the virulence of E. tarda CK108 in Japanese flounder. The virulence of plasmid-cured E. tarda CK108 was lower (survival rate 80%) than that of CK41 (20%), indicating the existence of virulence-associated genes in pCK41. The strain also appeared to be attenuated in both goldfish and zebrafish pathogenesis models. To analyze genes for antibiotic resistance and virulence in pCK41, the entire nucleotide sequences of pCK41 were determined (GenBank accession number: HQ332785). A total of 84 open reading frames (ORFs) were annotated. The pCK41 plasmid consists of potential virulence genes, transposases, plasmid maintenance genes, antibiotic-resistance genes (including kanamycin, tetracycline, and streptomycin), conjugal transfer genes, and unknown ORFs. These results suggest that pCK41 is a virulence plasmid of substantial importance in the E. tarda pathogenesis to fish.
Assuntos
Farmacorresistência Bacteriana , Edwardsiella tarda/genética , Edwardsiella tarda/patogenicidade , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Plasmídeos/genética , Animais , Edwardsiella tarda/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Linguado , Dados de Sequência Molecular , Fases de Leitura Aberta , Plasmídeos/metabolismo , VirulênciaRESUMO
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.
Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Regiões Árticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Família Multigênica , RNA Mensageiro/metabolismoRESUMO
Overexpression of cancer upregulated gene (CUG) 2 induces cancer stem cell-like phenotypes, such as enhanced epithelial-mesenchymal transition, sphere formation, and doxorubicin resistance. However, the precise mechanism of CUG2-induced oncogenesis remains unknown. We evaluated the effects of overexpression of CUG2 on microRNA levels using a microRNA microarray. Levels of miR-3656 were decreased when CUG2 was overexpressed; on the basis of this result, we further examined the target proteins of this microRNA. We focused on Jumonji C domain-containing protein 5 (JMJD5), as it has not been previously reported to be targeted by miR-3656. When CUG2 was overexpressed, JMJD5 expression was upregulated compared to that in control cells. A 3' untranslated region (UTR) assay revealed that an miR-3656 mimic targeted the JMJD5 3'UTR, but the miR-3656 mimic failed to target a mutant JMJD5 3'UTR, indicating that miR-3656 targets the JMJD5 transcript. Administration of the miR-3656 mimic decreased the protein levels of JMD5 according to Western blotting. Additionally, the miR-3656 mimic decreased CUG2-induced cell migration, evasion, and sphere formation and sensitized the cells to doxorubicin. Suppression of JMJD5, with its small interfering RNA, impeded CUG2-induced cancer stem cell-like phenotypes. Thus, overexpression of CUG2 decreases miR-3656 levels, leading to upregulation of JMJD5, eventually contributing to cancer stem cell-like phenotypes.
Assuntos
MicroRNAs , Neoplasias , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Transdução de SinaisRESUMO
Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-stranded fragment, feature various characteristics with respect to size, toxicity, and permeability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and are materials that can be produced through relatively simple experiments. Systematic evolution of ligands by exponential enrichment (SELEX) is one of the most widely used experimental methods for generating aptamers; however, it is highly expensive and time-consuming. To reduce the related costs, recent studies have used in silico approaches, such as aptamer-protein interaction (API) classifiers that use sequence patterns to determine the binding affinity between RNA aptamers and proteins. Some of these methods generate candidate RNA aptamer sequences that bind to a target protein, but they are limited to producing candidates of a specific size. In this study, we present a machine learning approach for selecting candidate sequences of various sizes that have a high binding affinity for a specific sequence of a target protein. We applied the Monte Carlo tree search (MCTS) algorithm for generating the candidate sequences using a score function based on an API classifier. The tree structure that we designed with MCTS enables nucleotide sequence sampling, and the obtained sequences are potential aptamer candidates. We performed a quality assessment using the scores of docking simulations. Our validation datasets revealed that our model showed similar or better docking scores in ZDOCK docking simulations than the known aptamers. We expect that our method, which is size-independent and easy to use, can provide insights into searching for an appropriate aptamer sequence for a target protein during the simulation step of SELEX.