Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pain Rep ; 6(2): e944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34278163

RESUMO

Chronic pain is associated with persistent but reversible structural and functional changes in the prefrontal cortex (PFC). This stable yet malleable plasticity implicates epigenetic mechanisms, including DNA methylation, as a potential mediator of chronic pain-induced cortical pathology. We previously demonstrated that chronic oral administration of the methyl donor S-adenosyl methionine (SAM) attenuates long-term peripheral neuropathic pain and alters global frontal cortical DNA methylation. However, the specific genes and pathways associated with the resolution of chronic pain by SAM remain unexplored. OBJECTIVE: To determine the effect of long-term therapeutic exposure to SAM on the DNA methylation of individual genes and pathways in a mouse neuropathic pain model. METHODS: Male CD-1 mice received spared nerve injury or sham surgery. Three months after injury, animals received SAM (20 mg/kg, oral, 3× a week) or vehicle for 16 weeks followed by epigenome-wide analysis of frontal cortex. RESULTS: Peripheral neuropathic pain was associated with 4000 differentially methylated genomic regions that were enriched in intracellular signaling, cell motility and migration, cytoskeletal structure, and cell adhesion pathways. A third of these differentially methylated regions were reversed by SAM treatment (1415 regions representing 1013 genes). More than 100 genes with known pain-related function were differentially methylated after nerve injury; 29 of these were reversed by SAM treatment including Scn10a, Trpa1, Ntrk1, and Gfap. CONCLUSION: These results suggest a role for the epigenome in the maintenance of chronic pain and advance epigenetic modulators such as SAM as a novel approach to treat chronic pain.

2.
JOR Spine ; 4(3): e1148, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34611584

RESUMO

INTRODUCTION: Low back pain (LBP), a leading cause of global disability, is often associated with intervertebral disc degeneration (IDD). Exercise therapy is recommended for chronic LBP management and affects many tissues and organ systems. However, the ability of exercise to repair the extracellular matrix (ECM) in degenerating discs is unclear. The aims of the study were to examine mRNA expression of ECM structural components (collagen I, II, X, aggrecan) and regulators of matrix turnover (matrix metalloproteinases (MMP)-3, - 9, - 13, ADAMTS-4, - 5, TIMP1-4, CCN2) between age-matched (a) wild-type and secreted protein acidic and rich in cysteine (SPARC)-null, (b) sedentary and active, and (c) male and female mice. METHODS: At 8 months of age, male and female SPARC-null and wild-type control mice received a home cage running wheel or a control, fixed wheel for 6 months. Deletion of the SPARC gene results in progressive IDD beginning at 2 to 4 months of age. Increased activity was confirmed, and qPCR was performed on excised lumbar discs. RESULTS: Male SPARC-null mice expressed less aggrecan mRNA than wild-type controls. After 6 months of running, collagen, MMP3, and MMP13 expression was increased in male and MMP3 was increased in female SPARC-null mice. Sex differences were observed in wild-type mice and in response to IDD and long-term running. CONCLUSIONS: Voluntary running results in changes in mRNA consistent with increased ECM turnover and disc regeneration. Improved disc ECM might contribute to the beneficial effects of exercise on LBP and may create an intradiscal environment hospitable to regenerative therapies. Sex-specific differences should be considered in the development of disc-targeting therapies.

3.
Spine J ; 21(11): 1938-1949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116218

RESUMO

BACKGROUND CONTEXT: Chronic low back pain (LBP) is a multifactorial disorder with complex underlying mechanisms, including associations with intervertebral disc (IVD) degeneration in some individuals. It has been demonstrated that epigenetic processes are involved in the pathology of IVD degeneration. Epigenetics refers to several mechanisms, including DNA methylation, that have the ability to change gene expression without inducing any change in the underlying DNA sequence. DNA methylation can alter the entire state of a tissue for an extended period of time and thus could potentially be harnessed for long-term pain relief. Lifestyle factors, such as physical activity, have a strong influence on epigenetic regulation. Exercise is a commonly prescribed treatment for chronic LBP, and sex-specific epigenetic adaptations in response to endurance exercise have been reported. However, whether exercise interventions that attenuate LBP are associated with epigenetic alterations in degenerating IVDs has not been evaluated. PURPOSE: We hypothesize that the therapeutic efficacy of physical activity is mediated, at least in part, at the epigenetic level. The purpose of this study was to use the SPARC-null mouse model of LBP associated with IVD degeneration to clarify (1) if IVD degeneration is associated with altered expression of epigenetic regulatory genes in the IVDs, (2) if epigenetic regulatory machinery is sensitive to therapeutic environmental intervention, and (3) if there are sex-specific differences in (1) and/or (2). STUDY DESIGN: Eight-month-old male and female SPARC-null and age-matched control (WT) mice (n=108) were assigned to exercise (n=56) or sedentary (n=52) groups. Deletion of SPARC is associated with progressive IVD degeneration and behavioral signs of LBP. The exercise group received a circular plastic home cage running wheel on which they could run freely. The sedentary group received an identical wheel secured in place to prevent rotation. After 6 months, the results obtained in each group were compared. METHODS: After 6 months of exercise, LBP-related behavioral indices were determined, and global DNA methylation (5-methylcytosine) and epigenetic regulatory gene mRNA expression in IVDs were assessed. This project was supported by the Canadian Institutes for Health Research. The authors have no conflicts of interest. RESULTS: Lumbar IVDs from WT sedentary and SPARC-null sedentary mice had similar levels of global DNA methylation (%5-mC) and comparable mRNA expression of epigenetic regulatory genes (Dnmt1,3a,b, Mecp2, Mbd2a,b, Tet1-3) in both sexes. Exercise attenuated LBP-related behaviors, decreased global DNA methylation in both WT (p<.05) and SPARC-null mice (p<.01) and reduced mRNA expression of Mecp2 in SPARC-null mice (p<.05). Sex-specific effects of exercise on expression of mRNA were also observed. CONCLUSIONS: Exercise alleviates LBP in a mouse model. This may be mediated, in part, by changes in the epigenetic regulatory machinery in degenerating IVDs. Epigenetic alterations due to a lifestyle change could have a long-lasting therapeutic impact by changing tissue homeostasis in IVDs. CLINICAL SIGNIFICANCE: This study confirmed the therapeutic benefits of exercise on LBP and suggests that exercise results in sex-specific alterations in epigenetic regulation in IVDs. Elucidating the effects of exercise on epigenetic regulation may enable the discovery of novel gene targets or new strategies to improve the treatment of chronic LBP.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Animais , Canadá , Epigênese Genética , Feminino , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Dor Lombar/genética , Dor Lombar/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Pain ; 161(10): 2394-2409, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32427748

RESUMO

Chronic pain is associated with persistent structural and functional changes throughout the neuroaxis, including in the prefrontal cortex (PFC). The PFC is important in the integration of sensory, cognitive, and emotional information and in conditioned pain modulation. We previously reported widespread epigenetic reprogramming in the PFC many months after nerve injury in rodents. Epigenetic modifications, including DNA methylation, can drive changes in gene expression without modifying DNA sequences. To date, little is known about epigenetic dysregulation at the onset of acute pain or how it progresses as pain transitions from acute to chronic. We hypothesize that acute pain after injury results in rapid and persistent epigenetic remodelling in the PFC that evolves as pain becomes chronic. We further propose that understanding epigenetic remodelling will provide insights into the mechanisms driving pain-related changes in the brain. Epigenome-wide analysis was performed in the mouse PFC 1 day, 2 weeks, 6 months, and 1 year after peripheral injury using the spared nerve injury in mice. Spared nerve injury resulted in rapid and persistent changes in DNA methylation, with robust differential methylation observed between spared nerve injury and sham-operated control mice at all time points. Hundreds of differentially methylated genes were identified, including many with known function in pain. Pathway analysis revealed enrichment in genes related to stimulus response at early time points, immune function at later time points, and actin and cytoskeletal regulation throughout the time course. These results emphasize the importance of considering pain chronicity in both pain research and in treatment optimization.


Assuntos
Dor Crônica , Traumatismos dos Nervos Periféricos , Animais , Dor Crônica/genética , Metilação de DNA/genética , Epigênese Genética/genética , Camundongos , Córtex Pré-Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA