RESUMO
Astragaloside IV (AS-IV) has been reported to have a prominent antioxidant effect and was proposed as a promising agent for the prevention of neurodegenerative disorders accompanied by cognitive impairment. The present study investigated the ameliorating effect of AS-IV on learning and memory deficits induced by chronic cerebral hypoperfusion in rats. Rats were treated with two doses of AS-IV (10 and 20 mg/kg, i.p.) daily for 28 days starting from the 5th week after permanent bilateral common carotid artery occlusion. AS-IV treatment (at dose of 20 mg/kg) significantly improved the spatial learning and memory deficits assessed using the Morris water maze test in rats with chronic cerebral hypoperfusion. AS-IV significantly attenuated neuronal apoptosis as well as the levels of superoxide dismutase and lipid peroxidation markers, including malondialdehyde and 4-hydroxy-2-nonenal, in the hippocampus. AS-IV also significantly reduced 8-hydroxy-2'-deoxyguanosine expression, a maker of oxidative DNA damage, while significantly inhibited the astrocyte and microglia activation in the hippocampus. The results indicate that AS-IV has therapeutic potential for the prevention of dementia caused by cerebral hypoperfusion and suggest that the ameliorating effect of AS-IV on learning and memory deficits might be the result of suppressing neuronal apoptosis and oxidative damage in the hippocampus.
Assuntos
Antioxidantes/uso terapêutico , Doenças das Artérias Carótidas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Antioxidantes/farmacologia , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Doenças das Artérias Carótidas/complicações , Circulação Cerebrovascular , Doença Crônica , Avaliação Pré-Clínica de Medicamentos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto , Proteínas dos Microfilamentos/metabolismo , Neuroglia/fisiologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos Sprague-Dawley , Saponinas/farmacologia , Triterpenos/farmacologiaRESUMO
Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.