RESUMO
BACKGROUND: Understanding the changes in characteristics of patients who visited trauma centres during the coronavirus disease 2019 (COVID-19) pandemic is important to facilitate aneffective response. This retrospective study was conducted to analyse differences in the characteristics and outcomes of patients who visited our trauma centre between pre-COVID-19 and COVID-19 eras. METHODS: Medical data of trauma patients enrolled in the Korean trauma database from 1 January 2018 to 31 August 2021 were collected. The number of trauma centre visits, patient characteristics, factors associated with in-hospital intervention, and outcomes werecompared between patients in the two time periods. Propensity score matching was performed to analyse the outcomes in patients with similar characteristics and severitybetween patients in the two time periods. RESULTS: The number of emergency department (ED) trauma service visits reduced in the COVID-19 era. Based on the mean age, the patients were older in the COVID-19 era. Abbreviated injury scale (AIS) 1, AIS3, AIS5, and injury severity score (ISS) were higher in the COVID-19 era. The proportion of motor vehicle collisions decreased, whereas falls increased during the COVID-19 era. Ambulance transportation, admission to the general ward, and time from injury to ED visit significantly increased. Patient outcomes, such as hospital length of stay (LOS), intensive care unit (ICU) LOS, and duration of mechanical ventilation improved, while injury severity worsened during the COVID-19 era. After adjusting for patient characteristics and severity, similar findings were observed. CONCLUSION: The small reduction in the number of trauma patients and visits by patients who hadhigher ISS during the COVID-19 pandemic highlights the importance of maintaining trauma service capacity and capability during the pandemic. A nationwide or nationalmulticentre study will be more meaningful to examine the impact of the COVID-19 outbreak on the changes in trauma patterns, volume, and patient outcomes.
Assuntos
COVID-19 , Ferimentos e Lesões , COVID-19/epidemiologia , Humanos , Escala de Gravidade do Ferimento , Tempo de Internação , Pandemias , Estudos Retrospectivos , Centros de Traumatologia , Ferimentos e Lesões/epidemiologia , Ferimentos e Lesões/terapiaRESUMO
Background and Objectives: Point-of-care ultrasound (POCUS) is a useful tool that helps clinicians properly treat patients in emergency department (ED). This study aimed to evaluate the impact of specific interventions on the use of POCUS in the ED. Materials and Methods: This retrospective study used an interrupted time series analysis to assess how interventions changed the use of POCUS in the emergency department of a tertiary medical institute in South Korea from October 2016 to February 2021. We chose two main interventions-expansion of benefit coverage of the National Health Insurance (NHI) for emergency ultrasound (EUS) and annual ultrasound educational workshops. The primary variable was the EUS rate, defined as the number of EUS scans per 1000 eligible patients per month. We compared the level and slope of EUS rates before and after interventions. Results: A total of 5188 scanned records were included. Before interventions, the EUS rate had increased gradually. After interventions, except for the first workshop, the EUS rate immediately increased significantly (p < 0.05). The difference in the EUS rate according to the expansion of the NHI was estimated to be the largest (p < 0.001). However, the change in slope significantly decreased after the third workshop during the coronavirus disease 2019 pandemic (p = 0.004). The EUS rate increased significantly in the presence of physicians participating in intensive POCUS training (p < 0.001). Conclusion: This study found that expansion of insurance coverage for EUS and ultrasound education led to a significant and immediate increase in the use of POCUS, suggesting that POCUS use can be increased by improving education and insurance benefits.
Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Serviço Hospitalar de Emergência , Humanos , Benefícios do Seguro , Análise de Séries Temporais Interrompida , Estudos Retrospectivos , SARS-CoV-2 , UltrassonografiaRESUMO
Background and objectives: Ocular ultrasound is a core application of point-of-care ultrasound (POCUS) to assist physicians in promptly identifying various ocular diseases at the bedside; however, hands-on POCUS training is challenging during a pandemic. Materials and Methods: A randomized controlled non-inferiority trial was conducted in an academic emergency department from October 2020 to April 2021. Thirty-two participants were randomly assigned to one of two groups. Group H (hands-on learning group) participated individually in a hands-on session with a standardized patient for 30 min, whereas Group O (online learning group) learned training materials and video clips for 20 min. They scanned four eyeballs of two standardized patients sequentially following the ocular POCUS scan protocol. Repeated POCUS scans were performed 2 weeks later to assess skill maintenance. Both groups completed the pre- and post-surveys and knowledge tests. Two emergency medicine faculty members blindly evaluated the data and assigned a score of 0−25. The primary endpoint was the initial total score of scan quality evaluated using non-inferiority analysis (generalized estimating equation). The secondary endpoints were total scores for scan quality after 2 weeks, scan time, and knowledge test scores. Results: The least squares means of the total scores were 21.7 (0.35) for Group O and 21.3 (0.25) for Group H, and the lower bound of the 95% confidence interval (CI) was greater than the non-inferiority margin of minus 2 (95% CI: −0.48−1.17). The second scan scores were not significantly different from those of the first scan. The groups did not differ in scanning time or knowledge test results; however, Group H showed higher subjective satisfaction with the training method (p < 0.001). Conclusion: This study showed that basic online ocular ultrasound education was not inferior to hands-on education, suggesting that it could be a useful educational approach in the pandemic era.
Assuntos
Competência Clínica , Educação a Distância , Avaliação Educacional , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia/métodosRESUMO
Numerous chemicals including environmental toxicants and drugs have not been fully evaluated for developmental neurotoxicity. A key gap exists in the ability to predict accurately and robustly in vivo outcomes based on in vitro assays. This is particularly the case for predicting the toxicity of chemicals on the developing human brain. A critical need for such in vitro assays is choice of a suitable model cell type. To that end, we have performed high-throughput in vitro assessment of proliferation and differentiation of human neural stem cells (hNSCs). Conventional in vitro assays typically use immunofluorescence staining to quantify changes in cell morphology and expression of neural cell-specific biomarkers, which is often time-consuming and subject to variable specificities of available antibodies. To alleviate these limitations, we developed a miniaturized, three-dimensional (3D) hNSC culture with ReNcell VM on microarray chip platforms and established a high-throughput promoter-reporter assay system using recombinant lentiviruses on hNSC spheroids to assess cell viability, self-renewal, and differentiation. Optimum cell viability and spheroid formation of 3D ReNcell VM culture were observed on a micropillar chip over a period of 9 days in a mixture of 0.75% (w/v) alginate and 1â¯mg/mL growth factor reduced (GFR) Matrigel with 25â¯mM CaCl2 as a crosslinker for alginate. In addition, 3D ReNcell VM culture exhibited self-renewal and differentiation on the microarray chip platform, which was efficiently monitored by enhanced green fluorescent protein (EGFP) expression of four NSC-specific biomarkers including sex determining region Y-box 2 (SOX2), glial fibrillary acidic protein (GFAP), synapsin1, and myelin basic protein (MBP) with the promoter-reporter assay system.
Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise Serial de Proteínas/métodosRESUMO
The US Environmental Protection Agency (EPA) launched the Transform Tox Testing Challenge in 2016 with the goal of developing practical methods that can be integrated into conventional high-throughput screening (HTS) assays to better predict the toxicity of parent compounds and their metabolites in vivo. In response to this need and to retrofit existing HTS assays for assessing metabolism-induced toxicity of compounds, we have developed a 384-pillar plate that is complementary to traditional 384-well plates and ideally suited for culturing human cells in three dimensions at a microscale. Briefly, human embryonic kidney (HEK) 293 cells in a mixture of alginate and Matrigel were printed on the 384-pillar plates using a microarray spotter, which were coupled with 384-well plates containing nine model compounds provided by the EPA, five representative Phase I and II drug metabolizing enzymes (DMEs), and one no enzyme control. Viability and membrane integrity of HEK 293 cells were measured with the calcein AM and CellTiter-Glo® kit to determine the IC50 values of the nine parent compounds and DME-generated metabolites. The Z' factors and the coefficient of variation measured were above 0.6 and below 14%, respectively, indicating that the assays established on the 384-pillar plate are robust and reproducible. Out of nine compounds tested, six compounds showed augmented toxicity with DMEs and one compound showed detoxification with a Phase II DME. This result indicates that the 384-pillar plate platform can be used to measure metabolism-induced toxicity of compounds in high-throughput with individual DMEs. As xenobiotics metabolism is a complex process with a variety of DMEs involved, the predictivity of our approach could be further improved with mixtures of DMEs.
Assuntos
Ensaios de Triagem em Larga Escala/métodos , Inativação Metabólica/efeitos dos fármacos , Testes de Toxicidade/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Família 3 do Citocromo P450/efeitos dos fármacos , Família 3 do Citocromo P450/metabolismo , Relação Dose-Resposta a Droga , Fluoresceínas , Células HEK293 , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Medições Luminescentes , Testes de Toxicidade/instrumentaçãoRESUMO
BACKGROUND: Allergic diseases including allergic rhinitis, asthma, and atopic dermatitis are increasing worldwide. Common medications used to treat these inflammatory disorders are anti-histamines and corticosteroids, but they have their own limitations such as short duration and severe side effects. Thus, interest in complementary and alternative medicine is continually growing. Here, we investigate the anti-inflammatory mechanisms of Tonggyu-tang (TGT), a traditional Korean medicine that has been used to treat patients with allergic nasal disorders. METHODS: We measured mRNA expressions and production of pro-inflammatory cytokines such as interleukin (IL)-4, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α) by RT-PCR and ELISA assays in HMC-1 (human mast cell line-1) and HaCaT cells, immortalized human keratinocytes. Moreover, we evaluated the effect of TGT on two major inflammation-related pathways, mitogen activated protein kinase (MAPK) and NF-κB signaling pathway in these two cells. RESULTS: Our results revealed that that TGT significantly reduced the expression and production of inflammatory cytokines such as IL-4, IL-6, IL-8, and TNF-α in the agonist-treated HMC-1 and HaCaT cells. We also found that TGT suppressed MAPK signaling pathway including extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), and c-Jun N-terminal kinase (JNK) as well as NF-κB pathway, which are known to regulate inflammatory cytokine expression. CONCLUSION: Taken together, our results demonstrate that TGT inhibits expression of pro-inflammatory cytokines by suppressing MAPK and NF-kB pathway in both mast cells and keratinocytes, suggesting the potential use of TGT in treating allergic inflammatory diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Queratinócitos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , NF-kappa B/imunologia , Extratos Vegetais/farmacologia , Anti-Inflamatórios/química , Linhagem Celular , Citocinas/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Queratinócitos/imunologia , Mastócitos/imunologia , Medicina Tradicional Coreana , NF-kappa B/genética , Extratos Vegetais/químicaRESUMO
BACKGROUND: Herbal medicines have been used in cancer treatment, with many exhibiting favorable side effect and toxicity profiles compared with conventional chemotherapeutic agents. SH003 is a novel extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes Kirilowii Maximowicz combined at a 1:1:1 ratio that impairs the growth of breast cancer cells. This study investigates anti-cancer effects of SH003 in prostate cancer cells. METHODS: SH003 extract in 30% ethanol was used to treat the prostate cancer cell lines DU145, LNCaP, and PC-3. Cell viability was determined by MTT and BrdU incorporation assays. Next, apoptotic cell death was determined by Annexin V and 7-AAD double staining methods. Western blotting was conducted to measure protein expression levels of components of cell death and signaling pathways. Intracellular reactive oxygen species (ROS) levels were measured using H2DCF-DA. Plasmid-mediated ERK2 overexpression in DU145 cells was used to examine the effect of rescuing ERK2 function. Results were analyzed using the Student's t-test and P-values < 0.05 were considered to indicate statistically-significant differences. RESULTS: Our data demonstrate that SH003 induced apoptosis in DU145 prostate cancer cells by inhibiting ERK signaling. SH003 induced apoptosis of prostate cancer cells in dose-dependent manner, which was independent of androgen dependency. SH003 also increased intracellular ROS levels but this is not associated with its pro-apoptotic effects. SH003 inhibited phosphorylation of Ras/Raf1/MEK/ERK/p90RSK in androgen-independent DU145 cells, but not androgen-dependent LNCaP and PC-3 cells. Moreover, ERK2 overexpression rescued SH003-induced apoptosis in DU145 cells. CONCLUSIONS: SH003 induces apoptotic cell death of DU145 prostate cancer cells by inhibiting ERK2-mediated signaling.
Assuntos
Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Angelica , Astrágalo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Extratos Vegetais/farmacologia , TrichosanthesRESUMO
Human liver organoids (HLOs) hold significant potential for recapitulating the architecture and function of liver tissues in vivo. However, conventional culture methods of HLOs, forming Matrigel domes in 6-/24-well plates, have technical limitations such as high cost and low throughput in organoid-based assays for predictive assessment of compounds in clinical and pharmacological lab settings. To address these issues, we have developed a unique microarray 3D bioprinting protocol of progenitor cells in biomimetic hydrogels on a pillar plate with sidewalls and slits, coupled with a clear bottom, 384-deep well plate for scale-up production of HLOs. Microarray 3D bioprinting, a droplet-based printing technology, was used to generate a large number of small organoids on the pillar plate for predictive hepatotoxicity assays. Foregut cells, differentiated from human iPSCs, were mixed with Matrigel and then printed on the pillar plate rapidly and uniformly, resulting in coefficient of variation (CV) values in the range of 15 - 18%, without any detrimental effect on cell viability. Despite utilizing 10 - 50-fold smaller cell culture volume compared to their counterparts in Matrigel domes in 6-/24-well plates, HLOs differentiated on the pillar plate exhibited similar morphology and superior function, potentially due to rapid diffusion of nutrients and oxygen at the small scale. Day 25 HLOs were robust and functional on the pillar plate in terms of their viability, albumin secretion, CYP3A4 activity, and drug toxicity testing, all with low CV values. From three independent trials of in situ assessment, the IC50 values calculated for sorafenib and tamoxifen were 6.2 ± 1.6 µM and 25.4 ± 8.3 µM, respectively. Therefore, our unique 3D bioprinting and miniature organoid culture on the pillar plate could be used for scale-up, reproducible generation of HLOs with minimal manual intervention for high-throughput assessment of compound hepatotoxicity.
RESUMO
Human liver organoids (HLOs) hold significant potential for recapitulating the architecture and function of liver tissues in vivo. However, conventional culture methods of HLOs, forming Matrigel domes in 6-/24-well plates, have technical limitations such as high cost and low throughput in organoid-based assays for predictive assessment of compounds in clinical and pharmacological lab settings. To address these issues, we have developed a unique microarray 3D bioprinting protocol of progenitor cells in biomimetic hydrogels on a pillar plate with sidewalls and slits, coupled with a clear bottom, 384-deep well plate for scale-up production of HLOs. Microarray 3D bioprinting, a droplet-based printing technology, was used to generate a large number of small organoids on the pillar plate for predictive hepatotoxicity assays. Foregut cells, differentiated from human iPSCs, were mixed with Matrigel and then printed on the pillar plate rapidly and uniformly, resulting in coefficient of variation (CV) values in the range of 15-18%, without any detrimental effect on cell viability. Despite utilizing 10-50-fold smaller cell culture volume compared to their counterparts in Matrigel domes in 6-/24-well plates, HLOs differentiated on the pillar plate exhibited similar morphology and superior function, potentially due to rapid diffusion of nutrients and oxygen at the small scale. Day 25 HLOs were robust and functional on the pillar plate in terms of their viability, albumin secretion, CYP3A4 activity, and drug toxicity testing, all with low CV values. From three independent trials of in situ assessment, the IC50 values calculated for sorafenib and tamoxifen were 6.2 ± 1.6 µM and 25.4 ± 8.3 µM, respectively. Therefore, our unique 3D bioprinting and miniature organoid culture on the pillar plate could be used for scale-up, reproducible generation of HLOs with minimal manual intervention for high-throughput assessment of compound hepatotoxicity.
Assuntos
Bioimpressão , Fígado , Organoides , Humanos , Organoides/citologia , Organoides/metabolismo , Bioimpressão/instrumentação , Fígado/citologia , Impressão Tridimensional , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Hidrogéis/química , Sobrevivência Celular/efeitos dos fármacosRESUMO
Enzyme-induced self-assembly (EISA) is a recently developed nanotechnology technique in which small molecules are induced by cellular enzymes self-assembling into nanostructures inside cancer cells. This technique can boost the efficacy of chemotherapy drugs by avoiding drug efflux, inhibiting the cells' DNA repair mechanisms, and targeting the mitochondria. In this work, we study the self-assembly of a short peptide and its fluorescence analogue induced by Eyes absent (EYA) tyrosine phosphatases to boost the efficacy of doxorubicin (DOX) therapy in drug-resistant types of breast cancer cells, MDA-MB-231 and MCF-7. The peptides Fmoc-FF-YP and NBD-FF-YP were synthesized with the solid-phase peptide synthesis (SPPS) method and analyzed with HPLC and MALDI-TOF. Dynamic light scattering was used to determine the size distribution of peptides exposed to the EYA enzyme in vitro. The presence of EYA enzymes in breast cancer cells was confirmed using the western blotting assay. The intracellular location of the peptide self-assembly was studied by imaging fluorescence NBD-tagged peptides. The efficacy of the peptide alone and with DOX was determined against MCF-7 and MDA-MB-231 using MTT and LIVE-DEAD assays. Nucleus and cytoplasm F-actin (Phalloidin) staining was used to determine cell morphology changes in response to the combination therapy of peptides/DOX. At an optimal concentration, the peptides are not toxic to the cells; however, they boost the efficacy of DOX against drug-resistant breast cancer cells. We used state-of-the-art computer-aided techniques to predict the molecular structure of peptides and their interactions with EYA. This study demonstrates an approach for incorporating non-cytotoxic components into DOX combination therapy, thereby avoiding increased systemic burden or adverse effects.
RESUMO
The liver's role in the biotransformation of chemicals is critical for both augmented toxicity and detoxification. However, there has been a significant lack of effort to integrate biotransformation into in vitro neurotoxicity testing. Traditional in vitro neurotoxicity testing systems are unable to assess the qualitative and quantitative differences between parent chemicals and their metabolites as they would occur in the human body. As a result, traditional in vitro toxicity screening systems cannot incorporate hepatic biotransformation to predict the neurotoxic potential of chemical metabolites. To bridge this gap, a high-throughput, metabolism-mediated neurotoxicity testing system has been developed, which combines metabolically competent HepaRG cell spheroids with a three-dimensional (3D) culture of ReNcell VM human neural progenitor cell line. The article outlines protocols for generating HepaRG cell spheroids using an ultralow attachment (ULA) 384-well plate and for cultivating ReNcell VM in 3D on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds are introduced into the ULA 384-well plate containing HepaRG spheroids and then tested with 3D-cultured ReNcell VM on the 384PillarPlate. This configuration permits the in situ generation of metabolites by HepaRG cells and their subsequent testing on neurospheres. By analyzing cell viability data, researchers can determine the IC50 values for each compound, thus evaluating metabolism-mediated neurotoxicity. © 2024 Wiley Periodicals LLC. Basic Protocol 1: HepaRG spheroid culture in an ultralow attachment (ULA) 384-well plate and the assessment of drug-metabolizing enzyme (DME) activities Basic Protocol 2: 3D neural stem cell (NSC) culture on a 384PillarPlate and compound treatment for the assessment of metabolism-mediated neurotoxicity Basic Protocol 3: Image acquisition, processing, and data analysis.
Assuntos
Técnicas de Cocultura , Ensaios de Triagem em Larga Escala , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cocultura/métodos , Ensaios de Triagem em Larga Escala/métodos , Testes de Toxicidade/métodos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Fígado/metabolismo , Fígado/citologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/citologia , Linhagem CelularRESUMO
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventionalin vitrocell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid did not induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Assuntos
Compostos de Metilmercúrio , Organoides , Organoides/efeitos dos fármacos , Organoides/citologia , Humanos , Compostos de Metilmercúrio/toxicidade , Encéfalo/efeitos dos fármacos , Síndromes Neurotóxicas , Perfusão , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacosRESUMO
Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To demonstrate cryopreservation application to human brain organoids (HBOs), early stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NE) in an ultralow attachment (ULA) 384-well plate. The NE was transferred and encapsulated in Matrigel on the pillar plate. The NE on the pillar plate was exposed to four commercially available CPAs, including the PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80 °C and subsequently stored in a liquid nitrogen dewar. We examined the impact of the CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of NE into HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving the early stage HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability postcryopreservation than larger ones. An incubation period of 80 min with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400-600 µm. These cryopreserved early stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to noncryopreserved HBOs. The cryopreserved early stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.
RESUMO
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional in vitro cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid didn't induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
RESUMO
Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To illustrate cryopreservation application to human brain organoids (HBOs), early-stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NEs) in an ultralow atachement (ULA) 384-well plate. These NEs were transferred and encapsulated in Matrigel on the pillar plate. The early-stage HBOs on the pillar plate were exposed to four commercially available CPAs, including PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80°C and subsequently stored in a liquid nitrogen dewar. We examined the impact of CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of early-stage HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving these HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability post-cryopreservation than larger ones. An incubation period of 80 minutes with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400 - 600 µm. These cryopreserved early-stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to non-cryopreserved HBOs. The cryopreserved early-stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.
RESUMO
Human liver organoids (HLOs) differentiated from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs) can recapitulate the structure and function of human fetal liver tissues, thus being considered as a promising tissue model for liver diseases and predictive compound screening. However, the adoption of HLOs in drug discovery faces several technical challenges, which include the lengthy differentiation process with multiple culture media leading to batch-to-batch variation, short-term maintenance of hepatic functions post-maturation, low assay throughput due to Matrigel dissociation and HLO transfer to a microtiter well plate, and insufficient maturity levels compared to primary hepatocytes. To address these issues, expandable HLOs (Exp-HLOs) derived from human iPSCs were generated by optimizing differentiation protocols, which were rapidly printed on a 144-pillar plate with sidewalls and slits (144PillarPlate) and dynamically cultured for up to 20 days into differentiated HLOs (Diff-HLOs) in a 144-perfusion plate with perfusion wells and reservoirs (144PerfusionPlate) for in situ organoid culture and analysis. The dynamically cultured Diff-HLOs exhibited greater maturity and reproducibility than those cultured statically, especially after a 10-day differentiation period. In addition, Diff-HLOs in the pillar/perfusion plate were tested with acetaminophen and troglitazone for 3 days to assess drug-induced liver injury (DILI) and then incubated in an expansion medium for 10 days to evaluate liver recovery from DILI. The assessment of liver regeneration post-injury is critical to understanding the mechanism of recovery and determining the threshold drug concentration beyond which there will be a sharp decrease in the liver's regenerative capacity. We envision that bioprinted Diff-HLOs in the pillar/perfusion plate could be used for high-throughput screening (HTS) of hepatotoxic compounds due to the short-term differentiation of passage-able Exp-HLOs, stable hepatic function post-maturation, high reproducibility, and high throughput with capability of in situ organoid culture, testing, staining, imaging, and analysis. Graphical abstract: The overall process of dynamic liver organoid culture and in situ analysis in the 144PillarPlate/144PerfusionPlate for high-throughput hepatotoxicity assays.
RESUMO
Static three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from a necrotic core due to limited nutrient and oxygen diffusion and waste removal and have a limited in vivo-like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture. Cell spheroids were loaded on the pillar plate with hydrogel by simple sandwiching and encapsulation and cultured dynamically in the perfusion plate on a digital rocker. Unlike traditional microfluidic devices, fast flow velocity was maintained within perfusion wells and the pillar plate was separated from the perfusion plate for cell-based assays. It was compatible with common lab equipment and allowed cell culture, testing, staining, and imaging in situ. The pillar/perfusion plate enhanced cell growth by rapid diffusion, reproducibility, assay throughput, and user friendliness in a dynamic 3D cell culture.
Assuntos
Técnicas de Cultura de Células em Três Dimensões , Proliferação de Células , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Humanos , Reprodutibilidade dos Testes , Perfusão/instrumentação , Hidrogéis/química , Esferoides Celulares/citologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentaçãoRESUMO
Despite the fact that biotransformation in the liver plays an important role in the augmented toxicity and detoxification of chemicals, relatively little efforts have been made to incorporate biotransformation into in vitro neurotoxicity testing. Conventional in vitro systems for neurotoxicity tests lack the capability of investigating the qualitative and quantitative differences between parent chemicals and their metabolites in the human body. Therefore, there is a need for an in vitro toxicity screening system that can incorporate hepatic biotransformation of chemicals and predict the susceptibility of their metabolites to induce neurotoxicity. To address this need, we adopted 3D cultures of metabolically competent HepaRG cell line with ReNcell VM and established a high-throughput, metabolism-mediated neurotoxicity testing system. Briefly, spheroids of HepaRG cells were generated in an ultralow attachment (ULA) 384-well plate while 3D-cultured ReNcell VM was established on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds were added in the ULA 384-well plate with HepaRG spheroids and coupled with 3D-cultured ReNcell VM on the 384PillarPlate, which allowed us to generate metabolites in situ by HepaRG cells and test them against neural stem cells. We envision that this approach could be potentially adopted in pharmaceutical and chemical industries when high-throughput screening (HTS) is necessary to assess neurotoxicity of compounds and their metabolites.
Assuntos
Técnicas de Cultura de Células , Células-Tronco Neurais , Humanos , Hepatócitos/metabolismo , Células Cultivadas , Fígado/metabolismo , Esferoides CelularesRESUMO
The aim of this study was to compare the outcomes of preperitoneal pelvic packing (PPP) and angioembolization (AE) for patients with equivocal vital signs after initial resuscitation. This single-centered retrospective study included information from the database of a regional trauma center from April 2014 to December 2022 for patients with pelvic fractures with a systolic blood pressure of 80-100 mmHg after initial fluid resuscitation. The patients' characteristics, outcomes, and details of AE after resuscitative endovascular balloon occlusion of the aorta (REBOA) placed in zone III were collected. The follow-up duration was from hospital admission to discharge. A total of 65 patients were enrolled in this study. Their mean age was 59.2 ± 18.1 years, and 40 were males. We divided the enrolled patients into PPP (n = 43) and AE (n = 22) groups. The median time from emergency department (ED) to procedure and the median duration of ED stay were significantly longer in the AE group than in the PPP group (p ≤ 0.001 for both). The median mechanical ventilation (MV) duration was significantly shorter (p = 0.046) in the AE group. The number of patients with complications, overall mortality, and mortality due to hemorrhage did not differ between the two groups. Three patients (13.6%) were successfully treated with AE after REBOA. AE may be beneficial for patients with hemodynamically unstable pelvic fractures who show equivocal vital signs after initial fluid resuscitation in terms of reducing the MV duration and incidence of infectious complications.
RESUMO
Static three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from the necrotic core due to limited nutrient and oxygen diffusion and waste removal and have limited in vivo-like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture. Cell spheroids have been loaded on the pillar plate with hydrogel by simple sandwiching and encapsulation and cultured dynamically in the perfusion plate on a digital rocker. Unlike traditional microfluidic devices, fast flow rates were maintained within perfusion wells, and the pillar plate could be separated from the perfusion plate for cell-based assays. It was compatible with common lab equipment and allowed cell culture, testing, staining, and imaging in situ. The pillar/perfusion plate enhanced cell growth by rapid diffusion, reproducibility, assay throughput, and user friendliness in dynamic 3D cell culture.