Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 14(1): 7096, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925459

RESUMO

Disrupted circadian rhythms have been linked to an increased risk of hypertension and cardiovascular disease. However, many studies show inconsistent findings and are not sufficiently powered for targeted subgroup analyses. Using the UK Biobank cohort, we evaluate the association between circadian rhythm-disrupting behaviours, blood pressure (SBP, DBP) and inflammatory markers in >350,000 adults with European white British ancestry. The independent U-shaped relationship between sleep length and SBP/DBP is most prominent with a low inflammatory status. Poor sleep quality and permanent night shift work are also positively associated with SBP/DBP. Although fully adjusting for BMI in the linear regression model attenuated effect sizes, these associations remain significant. Two-sample Mendelian Randomisation (MR) analyses support a potential causal effect of long sleep, short sleep, chronotype, daytime napping and sleep duration on SBP/DBP. Thus, in the current study, we present a positive association between circadian rhythm-disrupting behaviours and SBP/DBP regulation in males and females that is largely independent of age.


Assuntos
Jornada de Trabalho em Turnos , Distúrbios do Início e da Manutenção do Sono , Adulto , Masculino , Feminino , Humanos , Pressão Sanguínea/fisiologia , Bancos de Espécimes Biológicos , Sono/fisiologia , Ritmo Circadiano/fisiologia , Inflamação , Reino Unido
2.
Curr Opin Pharmacol ; 57: 21-27, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33207294

RESUMO

The mineralocorticoid receptor (MR) plays a central role in cardiac physiological function and disease and is thus an attractive therapeutic target for patients with heart failure. However, the incidence of significant side effects from mineralocorticoid receptor antagonist (MRA) treatment has led to investigation of new mechanisms that may enhance MR targeted therapies. Recent studies have identified the circadian clock as a novel, reciprocal interacting partner of the MR in the heart. While the closely related glucocorticoid receptor (GR) and its ligand, cortisol (corticosterone in rodents), are established regulators of the circadian clock, new data suggest that the MR can also regulate circadian clock gene expression and timing. This review will discuss the role of the MR and its ligands in the regulation of the circadian clock in the heart and the implications of dysregulation of these systems for cardiac disease progression, and for MR activation.


Assuntos
Sistema Cardiovascular , Ritmo Circadiano , Corticosteroides , Humanos , Antagonistas de Receptores de Mineralocorticoides , Receptores de Glucocorticoides , Receptores de Mineralocorticoides
3.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050730

RESUMO

Mineralocorticoid receptor (MR) antagonists (MRA), also referred to as aldosterone blockers, are now well-recognized for their clinical benefit in patients who have heart failure (HF) with reduced ejection fraction (HFrEF). Recent studies have also shown MRA can improve outcomes in patients with HFpEF, where the ejection fraction is preserved but left ventricular filling is reduced. While the MR is a steroid hormone receptor best known for antinatriuretic actions on electrolyte homeostasis in the distal nephron, it is now established that the MR has many physiological and pathophysiological roles in the heart, vasculature, and other nonepithelial tissue types. It is the impact of MR activation on these tissues that underpins the use of MRA in cardiovascular disease, in particular HF. This mini-review will discuss the origins and the development of MRA and highlight how their use has evolved from the "potassium-sparing diuretics" spironolactone and canrenone over 60 years ago, to the more receptor-selective eplerenone and most recently the emergence of new nonsteroidal receptor antagonists esaxerenone and finerenone.


Assuntos
Insuficiência Cardíaca , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Mineralocorticoides/fisiologia , Animais , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Terapia de Alvo Molecular , Espironolactona/farmacologia , Espironolactona/uso terapêutico , Volume Sistólico/efeitos dos fármacos , Volume Sistólico/fisiologia
4.
J Hum Hypertens ; 35(2): 124-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32733061

RESUMO

Recent studies have expanded our understanding of the actions of the mineralocorticoid receptor (MR) to a diverse array of tissue types that differ substantially from the epithelial cells of the renal nephron. In these cell types the role of the MR has been largely, but not exclusively, defined in terms of pathogenic signalling pathways leading to tissue injury and remodelling. Macrophages and cardiomyocytes are two cell types in which the MR plays a central role in the cardiac tissue response to injury, renovascular hypertension and oxidative stress for example. Macrophages are critical for resolution of tissue injury and wound healing and their pleiotropic actions are central to the development of many forms of heart, renal and vascular disease. The MR in cardiomyocytes is not only essential for the chronotropic and ionotropic actions of mineralocorticoids in the short and longer term, but also for induction of hypertrophic and proinflammatory signalling programs. The present review discusses recent studies, presented at the Aldosterone and Hypertension Satellite of the 15th Asian-Pacific Congress of Hypertension, investigating new mechanisms for MR signalling in these cells and how their dysfunction contributes to the onset and progression of cardiovascular disease and heart failure.


Assuntos
Doenças Cardiovasculares , Receptores de Mineralocorticoides , Aldosterona , Humanos , Antagonistas de Receptores de Mineralocorticoides , Mineralocorticoides
5.
Acta Physiol (Oxf) ; 227(1): e13294, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066975

RESUMO

AIM: Urinary oxygen tension (uPO2 ) may provide an estimate of renal medullary PO2 (mPO2 ) and thus risk of acute kidney injury (AKI). We assessed the potential for variations in urine flow and arterial PO2 (aPO2 ) to confound these estimates. METHODS: In 28 sheep urine flow, uPO2 , aPO2 and mPO2 were measured during development of septic AKI. In 65 human patients undergoing cardiac surgery requiring cardiopulmonary bypass (CPB) uPO2 and aPO2 were measured continuously during CPB, and in a subset of 20 patients, urine flow was estimated every 5 minutes. RESULTS: In conscious sheep breathing room air, uPO2 was more closely correlated with mPO2 than with aPO2 or urine flow. The difference between mPO2 and uPO2 varied little with urine flow or aPO2 . In patients, urine flow increased abruptly from 3.42 ± 0.29 mL min-1 to 6.94 ± 0.26 mL min-1 upon commencement of CPB, usually coincident with reduced uPO2 . During hyperoxic CPB high values of uPO2 were often observed at low urine flow. Low urinary PO2 during CPB (<10 mm Hg at any time during CPB) was associated with greater (4.5-fold) risk of AKI. However, low urine flow during CPB was not significantly associated with risk of AKI. CONCLUSIONS: uPO2 provides a robust estimate of mPO2 , but this relationship is confounded by the simultaneous presence of systemic hyperoxia and low urine flow. Urine flow increases and uPO2 decreases during CPB. Thus, CPB is probably the best time to use uPO2 to detect renal medullary hypoxia and risk of post-operative AKI.


Assuntos
Injúria Renal Aguda/urina , Medula Renal/metabolismo , Oxigênio/urina , Injúria Renal Aguda/etiologia , Animais , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/veterinária , Feminino , Modelos Biológicos , Sepse/complicações , Sepse/veterinária , Ovinos
6.
J Endocrinol ; 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689544

RESUMO

We previously identified a critical pathogenic role for MR activation in cardiomyocytes that included a potential interaction between the MR and the molecular circadian clock. While glucocorticoid regulation of the circadian clock is undisputed, MR interactions with circadian clock signalling are limited. We hypothesised that the MR influences cardiac circadian clock signalling, and vice versa. 10nM aldosterone or corticosterone regulated CRY 1, PER1, PER2 and ReverbA (NR1D1) gene expression patterns in H9c2 cells over 24hr. MR-dependent regulation of circadian gene promoters containing GREs and E-box sequences was established for CLOCK, Bmal, CRY 1 and CRY2, PER1 and PER2 and transcriptional activators CLOCK and Bmal modulated MR-dependent transcription of a subset of these promoters. We also demonstrated differential regulation of MR target gene expression in hearts of mice 4hr after administration of aldosterone at 8AM versus 8PM. Our data support combined MR regulation of a subset of circadian genes and that endogenous circadian transcription factors CLOCK and Bmal modulate this response. This unsuspected relationship links MR in the heart to circadian rhythmicity at the molecular level and has important implications for the biology of MR signalling in response to aldosterone as well as cortisol. These data are consistent with MR signalling in the brain where, like the heart, it preferentially responds to cortisol. Given the undisputed requirement for diurnal cortisol release in the entrainment of peripheral clocks, the present study highlights the MR as an important mechanism for transducing the circadian actions of cortisol in addition to the GR in the heart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA