Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 49(D1): D1074-D1082, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219674

RESUMO

canSAR (http://cansar.icr.ac.uk) is the largest, public, freely available, integrative translational research and drug discovery knowledgebase for oncology. canSAR integrates vast multidisciplinary data from across genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and more. It also provides unique data, curation and annotation and crucially, AI-informed target assessment for drug discovery. canSAR is widely used internationally by academia and industry. Here we describe significant developments and enhancements to the data, web interface and infrastructure of canSAR in the form of the new implementation of the system: canSARblack. We demonstrate new functionality in aiding translation hypothesis generation and experimental design, and show how canSAR can be adapted and utilised outside oncology.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Descoberta de Drogas/métodos , Bases de Conhecimento , Neoplasias/genética , Pesquisa Translacional Biomédica/métodos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Mineração de Dados/métodos , Genômica/métodos , Humanos , Internet , Oncologia/métodos , Estrutura Molecular , Neoplasias/metabolismo , Proteômica/métodos , Interface Usuário-Computador
2.
Nucleic Acids Res ; 47(D1): D917-D922, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30496479

RESUMO

canSAR (http://cansar.icr.ac.uk) is a public, freely available, integrative translational research and drug discovery knowlegebase. canSAR informs researchers to help solve key bottlenecks in cancer translation and drug discovery. It integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and unique, comprehensive and orthogonal 'druggability' assessments. canSAR is widely used internationally by academia and industry. Here we describe major enhancements to canSAR including new and expanded data. We also describe the first components of canSARblack-an advanced, responsive, multi-device compatible redesign of canSAR with a question-led interface.


Assuntos
Antineoplásicos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Bases de Conhecimento , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Conformação Proteica , Mapeamento de Interação de Proteínas , Pesquisa Translacional Biomédica , Interface Usuário-Computador
3.
Drug Discov Today Technol ; 32-33: 65-72, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33386096

RESUMO

Application of AI technologies in synthesis prediction has developed very rapidly in recent years. We attempt here to give a comprehensive summary on the latest advancement on retro-synthesis planning, forward synthesis prediction as well as quantum chemistry-based reaction prediction models. Besides an introduction on the AI/ML models for addressing various synthesis related problems, the sources of the reaction datasets used in model building is also covered. In addition to the predictive models, the robotics based high throughput experimentation technology will be another crucial factor for conducting synthesis in an automated fashion. Some state-of-the-art of high throughput experimentation practices carried out in the pharmaceutical industry are highlighted in this chapter to give the reader a sense of how future chemistry will be conducted to make compounds faster and cheaper.


Assuntos
Inteligência Artificial , Desenho Assistido por Computador , Medicamentos Sintéticos/química , Humanos
4.
J Cheminform ; 14(1): 28, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643512

RESUMO

BACKGROUND: Integration of medicinal chemistry data from numerous public resources is an increasingly important part of academic drug discovery and translational research because it can bring a wealth of important knowledge related to compounds in one place. However, different data sources can report the same or related compounds in various forms (e.g., tautomers, racemates, etc.), thus highlighting the need of organising related compounds in hierarchies that alert the user on important bioactivity data that may be relevant. To generate these compound hierarchies, we have developed and implemented canSARchem, a new compound registration and standardization pipeline as part of the canSAR public knowledgebase. canSARchem builds on previously developed ChEMBL and PubChem pipelines and is developed using KNIME. We describe the pipeline which we make publicly available, and we provide examples on the strengths and limitations of the use of hierarchies for bioactivity data exploration. Finally, we identify canonicalization enrichment in FDA-approved drugs, illustrating the benefits of our approach. RESULTS: We created a chemical registration and standardization pipeline in KNIME and made it freely available to the research community. The pipeline consists of five steps to register the compounds and create the compounds' hierarchy: 1. Structure checker, 2. Standardization, 3. Generation of canonical tautomers and representative structures, 4. Salt strip, and 5. Generation of abstract structure to generate the compound hierarchy. Unlike ChEMBL's RDKit pipeline, we carry out compound canonicalization ahead of getting the parent structure, similar to PubChem's OpenEye pipeline. canSARchem has a lower rejection rate compared to both PubChem and ChEMBL. We use our pipeline to assess the impact of grouping the compounds in hierarchies for bioactivity data exploration. We find that FDA-approved drugs show statistically significant sensitivity to canonicalization compared to the majority of bioactive compounds which demonstrates the importance of this step. CONCLUSIONS: We use canSARchem to standardize all the compounds uploaded in canSAR (> 3 million) enabling efficient data integration and the rapid identification of alternative compound forms with useful bioactivity data. Comparison with PubChem and ChEMBL pipelines evidenced comparable performances in compound standardization, but only PubChem and canSAR canonicalize tautomers and canSAR has a slightly lower rejection rate. Our results highlight the importance of compound hierarchies for bioactivity data exploration. We make canSARchem available under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0) at https://gitlab.icr.ac.uk/cansar-public/compound-registration-pipeline .

5.
Comb Chem High Throughput Screen ; 18(3): 281-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747448

RESUMO

Modern methods of drug discovery and development in recent years make a wide use of computational algorithms. These methods utilise Virtual Screening (VS), which is the computational counterpart of experimental screening. In this manner the in silico models and tools initial replace the wet lab methods saving time and resources. This paper presents the overall design and implementation of a web based scientific workflow system for virtual screening called, the Life Sciences Informatics (LiSIs) platform. The LiSIs platform consists of the following layers: the input layer covering the data file input; the pre-processing layer covering the descriptors calculation, and the docking preparation components; the processing layer covering the attribute filtering, compound similarity, substructure matching, docking prediction, predictive modelling and molecular clustering; post-processing layer covering the output reformatting and binary file merging components; output layer covering the storage component. The potential of LiSIs platform has been demonstrated through two case studies designed to illustrate the preparation of tools for the identification of promising chemical structures. The first case study involved the development of a Quantitative Structure Activity Relationship (QSAR) model on a literature dataset while the second case study implemented a docking-based virtual screening experiment. Our results show that VS workflows utilizing docking, predictive models and other in silico tools as implemented in the LiSIs platform can identify compounds in line with expert expectations. We anticipate that the deployment of LiSIs, as currently implemented and available for use, can enable drug discovery researchers to more easily use state of the art computational techniques in their search for promising chemical compounds. The LiSIs platform is freely accessible (i) under the GRANATUM platform at: http://www.granatum.org and (ii) directly at: http://lisis.cs.ucy.ac.cy.


Assuntos
Ensaios de Triagem em Larga Escala , Internet , Informática Médica , Algoritmos , Disciplinas das Ciências Biológicas , Relação Quantitativa Estrutura-Atividade
6.
Methods Mol Biol ; 685: 53-69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20981518

RESUMO

Advancements in combinatorial chemistry and high-throughput screening technology have enabled the synthesis and screening of large molecular libraries for the purposes of drug discovery. Contrary to initial expectations, the increase in screening library size, typically combined with an emphasis on compound structural diversity, did not result in a comparable increase in the number of promising hits found. In an effort to improve the likelihood of discovering hits with greater optimization potential, more recent approaches attempt to incorporate additional knowledge to the library design process to effectively guide the search. Multi-objective optimization methods capable of taking into account several chemical and biological criteria have been used to design collections of compounds satisfying simultaneously multiple pharmaceutically relevant objectives. In this chapter, we present our efforts to implement a multi-objective optimization method, MEGALib, custom-designed to the library design problem. The method exploits existing knowledge, e.g. from previous biological screening experiments, to identify and profile molecular fragments used subsequently to design compounds compromising the various objectives.


Assuntos
Algoritmos , Técnicas de Química Combinatória/métodos , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas , Avaliação Pré-Clínica de Medicamentos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA