Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Phys Chem A ; 127(18): 4152-4165, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129441

RESUMO

We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the "pseudo-lattice points" at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm-1 with only 875 SBGs at the MP2/6-31G(d,p) level of theory, in good agreement with 25 cm-1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40-45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.

2.
J Am Chem Soc ; 143(21): 8034-8045, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34027664

RESUMO

The photoinduced ring-opening reaction of 1,3-cyclohexadiene (CHD) to produce 1,3,5-hexatriene (HT) plays an essential role in the photobiological synthesis of vitamin D3 in the skin. This reaction follows the Woodward-Hoffmann rule, and C5-C6 bond rupture via an electronically excited state occurs with conrotatory motion of the end CH2 groups. However, it is noted that the photoexcited S1(π,π*) state of CHD is not electronically correlated with the ground state of HT, and the reaction must proceed via nonadiabatic transitions. In the present study, we have clearly observed the nonadiabatic reaction pathway via the doubly excited state of CHD using ultrafast extreme UV photoelectron spectroscopy. The results indicate that the reaction occurs in only 68 fs and creates product vibrational coherence. Extensive computational simulations support the interpretation of experimental results and provide further insights into the electronic dynamics in this paradigmatic electrocyclic ring-opening reaction.

3.
J Chem Phys ; 154(22): 224304, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241214

RESUMO

The internal conversion from the optically bright S2 (1B2u, ππ*) state to the dark S1 (1B3u, nπ*) state in pyrazine is a standard benchmark for experimental and theoretical studies on ultrafast radiationless decay. Since 2008, a few theoretical groups have suggested significant contributions of other dark states S3 (1Au, nπ*) and S4 (1B2g, nπ*) to the decay of S2. We have previously reported the results of nuclear wave packet simulations [Kanno et al., Phys. Chem. Chem. Phys. 17, 2012 (2015)] and photoelectron spectrum calculations [Mignolet et al., Chem. Phys. 515, 704 (2018)] that support the conventional two-state picture. In this article, the two different approaches, i.e., wave packet simulation and photoelectron spectrum calculation, are combined: We computed the time-resolved vacuum ultraviolet photoelectron spectrum and photoelectron angular distribution for the ionization of the wave packet transferred from S2 to S1. The present results reproduce almost all the characteristic features of the corresponding experimental time-resolved spectrum [Horio et al., J. Chem. Phys. 145, 044306 (2016)], such as a rapid change from a three-band to two-band structure. This further supports the existence and character of the widely accepted pathway (S2 → S1) of ultrafast internal conversion in pyrazine.

4.
J Chem Phys ; 154(16): 164108, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940846

RESUMO

Our recently developed trajectory surface hopping method uses numerical time derivatives of adiabatic potential gradients to estimate the nonadiabatic transition probability and the hopping direction. To demonstrate the practicality of the novel method, we applied it to the intermolecular photodissociation of a carbon dioxide dimer cation (CO2)2 +. Our simulations reproduced the measured velocity distribution of CO2 + fragments consisting of two (fast and slow) components and revealed that nonadiabatic transitions occur promptly toward the electronic ground state regardless of the fragment velocity. The structure of (CO2)2 + at optical excitation governs the fate of subsequent nonadiabatic dynamics leading to a fast or slow dissociation. Our method gave similar results to the fewest switches algorithm at lower computational expense. Our fast and robust surface hopping method is promising for the investigation of nonadiabatic dynamics in large and complex systems.

5.
Phys Rev Lett ; 122(5): 053002, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822022

RESUMO

Theoretical studies indicated that C_{60} exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1 fs=10^{-15} s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C_{60} in an intense 3.6 µm laser field. A prolate molecular elongation along the laser polarization axis is determined to be (6.1±1.4)% via both angular- and energy-resolved measurements of electrons that are released, driven back, and diffracted from the molecule within the same laser field. The observed deformation is confirmed by density functional theory simulations of nuclear dynamics on time-dependent adiabatic states and indicates a nonadiabatic excitation of the h_{g}(1) prolate-oblate mode. The results demonstrate the applicability of laser-driven electron diffraction methods for studying macromolecular structural dynamics in four dimensions with atomic time and spatial resolutions.

6.
Phys Chem Chem Phys ; 21(6): 3083-3091, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672937

RESUMO

Velocity and angular distributions of photofragment CO2+ ions produced from mass-selected (CO2)2+ at 532 nm excitation were observed in an ion imaging experiment. The velocity distribution was assigned to two components, fast and slow velocity components, which was consistent with the previous study by Bowers et al. The anisotropy parameters of the angular distributions for the fast and slow velocity components were experimentally determined to be ßfast = 1.52 ± 0.14 and ßslow = 0.46 ± 0.10, respectively. In the theoretical approach, potential energy surfaces (PESs) of (CO2)2+ were calculated along two coordinates, the intermolecular distance and mutual orientations of the CO2 monomers. In addition, molecular dynamics simulations were performed. The visible transition of the most stable staggered structure of (CO2)2+ was attributed to C[combining tilde]2Ag ← X[combining tilde]2Bu by an excited state calculation. On the PES of the C[combining tilde] state, a potential well was found in which the two CO2 monomers lay side by side to each other, in addition to a repulsive slope along the intermolecular distance. The results of the simulations confirmed that the fragment CO2+ ions with fast velocity and large anisotropy originated from the rapid dissociation of (CO2)2+ on the repulsive slope. Meanwhile, the fragment CO2+ ions with slow velocity and small anisotropy were expected to emerge from statistical dissociation after large amplitude libration of CO2 molecules which was caused by the potential well in the excited state PES.

7.
J Chem Phys ; 151(12): 124305, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575189

RESUMO

We performed reaction dynamics simulations to demonstrate that the vibrational dynamics of C60 induced by infrared (IR) pulses can be traced by triggering Coulomb explosion with intense femtosecond X-ray free electron laser (XFEL) probe pulses. The time series of the angular anisotropy ß(t) of fast C+ and C2+ fragments of C60 60+ produced by such an XFEL pulse reflects the instantaneous structure of C60 vibrationally excited by IR pulses. The phases and amplitudes of excited vibrational modes and the coupling between excited modes can be successfully extracted from the expansion of ß(t) in terms of vibrational modes. This proof-of-principle simulation clearly demonstrates that various information of the structures and reaction dynamics of large clusters or biomolecules can be retrieved by decomposing the experimentally determined ß(t) into vibrational modes.

8.
J Chem Phys ; 149(24): 244117, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599729

RESUMO

We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and ab initio models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.

9.
Phys Chem Chem Phys ; 19(30): 19707-19721, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28530728

RESUMO

Coulomb explosion of diiodomethane CH2I2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH3I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH2I2 in comparison to CH3I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH2I2. The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10 fs.

10.
J Chem Phys ; 147(15): 154310, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055324

RESUMO

We theoretically explore the effects of optical ellipticity on single-active-electron multiphoton excitation in atoms and (nearly) spherical molecules irradiated by intense polarized laser fields. This work was motivated by the experimental and theoretical studies of Hertel et al. [Phys. Rev. Lett. 102, 023003 (2009) and Phys. Rev. A 79, 053414 (2009)], who reported pronounced changes in the near-infrared-induced ion yields of xenon and C60 as a function of ellipticity (in particular, yield reduction for circular polarization) at low light intensities and derived a perturbative cross section formula to describe such polarization effects by assuming that the excited-state energies and radial transition electric dipole moments of the system are independent of the azimuthal quantum number l. First, by reformulating the N-photon absorption cross section of a single active electron, we prove that their assumptions reduce the network of optically allowed transition pathways into what we call the "Pascal triangle" consisting of (N + 1) (N + 2)/2 states only. Next, nonperturbative analytical and numerical solutions of the time-dependent Schrödinger equation for a simple model of two-photon excitation are presented not only in the low-intensity regime but also in the high-intensity regime. The results show that the determining factor of ellipticity-dependent multiphoton excitation probability is transition moment magnitudes and that the detailed energetic structure of the system also becomes important at high intensities. The experimentally observed flattening of the ion yields of xenon and C60 with increasing intensity can be explained without a saturation effect, which was previously deemed to be responsible for it. We also argue the applicability range of the cross section formula by Hertel et al. and the identity of the "doorway state" for ionization of C60.

11.
Environ Microbiol ; 18(8): 2495-506, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26636257

RESUMO

High-affinity hydrogen (H2 )-oxidizing bacteria possessing group 5 [NiFe]-hydrogenase genes are important contributors to atmospheric H2 uptake in soil environments. Although previous studies reported the occurrence of a significant H2 uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. Here, we show the existence of plant-associated bacteria with the ability to consume atmospheric H2 that may be a potential energy source required for their persistence in plants. Detection of the gene hhyL - encoding the large subunit of group 5 [NiFe]-hydrogenase - in plant tissues showed that plant-associated high-affinity H2 -oxidizing bacteria are widely distributed in herbaceous plants. Among a collection of 145 endophytic isolates, seven Streptomyces strains were shown to possess hhyL gene and exhibit high- or intermediate-affinity H2 uptake activity. Inoculation of Arabidopsis thaliana (thale cress) and Oryza sativa (rice) seedlings with selected isolates resulted in an internalization of the bacteria in plant tissues. H2 uptake activity per bacterial cells was comparable between plant and soil, demonstrating that both environments are favourable for the H2 uptake activity of streptomycetes. This study first demonstrated the occurrence of plant-associated high-affinity H2 -oxidizing bacteria and proposed their potential contribution as atmospheric H2 sink.


Assuntos
Arabidopsis/microbiologia , Endófitos/metabolismo , Hidrogênio/metabolismo , Oryza/microbiologia , Streptomyces/metabolismo , Transporte Biológico , Hidrogenase/genética , Oxirredução , Solo , Microbiologia do Solo , Streptomyces/genética , Streptomyces/isolamento & purificação
12.
Int J Syst Evol Microbiol ; 65(Pt 3): 805-810, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25481294

RESUMO

An obligately anaerobic bacterium, designated strain GK12(T), was isolated from an anaerobic digester in Fukagawa, Hokkaido Prefecture, Japan. The cells of strain GK12(T) were non-motile, non-spore-forming cocci that commonly occurred in chains. 16S rRNA gene sequence analysis revealed that strain GK12(T) was affiliated with the family Erysipelotrichaceae in the phylum Firmicutes and showed 91.8 % sequence similarity to the most closely related species, Faecalicoccus acidiformans. The strain grew at 30-50 °C (optimally at 40 °C) and at pH 5.5-8.5 (optimally at pH 7.5). The main end product of glucose fermentation was lactate. Yeast extract was required for growth. The strain contained C14 : 0, C14 : 0 1,1-dimethoxyalkane (DMA), C16 : 0 DMA and C18 : 0 DMA as the major cellular fatty acids (>10 % of the total). The polar lipid profile was composed of phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The whole-cell sugars were galactose, rhamnose and ribose. The cell-wall murein contained alanine, glutamic acid, lysine, serine and threonine, but not diaminopimelic acid. The G+C content of the genomic DNA was 47.7 mol%. Based on phenotypic, phylogenetic and chemotaxonomic properties, a novel genus and species, Catenisphaera adipataccumulans gen. nov., sp. nov., is proposed to accommodate strain GK12(T) ( = NBRC 108915(T) = DSM 25799(T)).


Assuntos
Bactérias Anaeróbias/classificação , Bacilos Gram-Positivos/classificação , Filogenia , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Reatores Biológicos/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Bacilos Gram-Positivos/genética , Bacilos Gram-Positivos/isolamento & purificação , Japão , Dados de Sequência Molecular , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Phys Chem Chem Phys ; 17(3): 2012-24, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25476139

RESUMO

We theoretically investigated the mechanism of ultrafast nonradiative transition through conical intersections in photoexcited pyrazine by ab initio quantum dynamical calculations. This work was motivated by the recent theoretical and experimental studies that presented conflicting results: the former is the on-the-fly semiclassical surface hopping calculation combined with the time-dependent density functional theory, which showed that nonadiabatic transitions from the optically bright S2 ((1)B(2u), ππ*) state to the optically dark S3 ((1)A(u), nπ*) and S4 ((1)B(2g), nπ*) states take place predominantly at the initial stage of electronic relaxation [U. Werner et al., Chem. Phys., 2008, 349, 319]; the latter is the pump-probe photoelectron spectroscopic measurement, which reported the S2 lifetime (22 ± 3 fs) of nonradiative decay to the almost dark S1 ((1)B(3u), nπ*) state [Y.-I. Suzuki et al., J. Chem. Phys., 2010, 132, 174302]. We constructed adiabatic and diabatic potential energy surfaces of these ππ* and nπ* states using the multireference configuration interaction method and calculated their diabatic couplings within two-dimensional subspaces spanned by selected ground-state normal coordinates. Contrary to the surface hopping study, our nuclear wave packet simulations demonstrated that nonadiabatic transitions to the S3 and S4 states are so small that the conventional two-state (S1 and S2) picture is valid. Ultrafast internal conversion of pyrazine, which is deemed to proceed with a 22 fs lifetime, in fact consists of three consecutive steps: (i) the wave packet excited to the S2 state travels toward the S2-S1 conical intersection in 10 fs, (ii) the nonadiabatic transition to the S1 state progresses at a rapid rate corresponding to a transient lifetime of 7 fs, and (iii) intramolecular vibrational energy redistribution occurs in the S1 state in about 80 fs after optical excitation. To verify this prediction, time-resolved experiments with a resolution of several fs or shorter are desirable.

14.
Appl Environ Microbiol ; 80(3): 1126-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296497

RESUMO

Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited ß-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.


Assuntos
Citoplasma/química , Ácidos Graxos não Esterificados/análise , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glucose/metabolismo , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solventes , Estresse Fisiológico , Temperatura
15.
J Chem Phys ; 141(12): 121105, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25273405

RESUMO

To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out on-the-fly classical trajectory calculations on the fragmentation dynamics of C60(q+) (q = 20-60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For q ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C60(q+) first ejects singly and multiply charged fast atomic cations C(z+) (z ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporations of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge q makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C60(q+) by ion impact or X-ray free electron laser is larger than 100 eV.

16.
Appl Environ Microbiol ; 79(22): 6998-7005, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014527

RESUMO

Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.


Assuntos
1-Butanol/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Butanóis/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias/genética , Bactérias/isolamento & purificação , Clonagem Molecular , Ciclopropanos/química , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/química , Genes Bacterianos , Interações Hidrofóbicas e Hidrofílicas , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
J Phys Chem Lett ; 14(37): 8281-8288, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37677142

RESUMO

Proton transfer is classified into two mechanisms: the Grotthuss (proton-relay) and vehicle mechanisms. It has been well studied on gas-phase proton transfer by a proton relay involving multiple molecules. However, a vehicle mechanism in which a single molecule transports a proton has rarely been reported. Here, we have obtained clear evidence that the proton transfers efficiently between the two protonation sites in protonated p-aminobenzoic acid (PABA·H+) by a single ammonia molecule as a vehicle. The gaseous PABA·H+ ions were reacted with NH3 or ND3 under single-collision conditions in a cold ion trap, and the proton-transferred ions were identified by cryogenic ion mobility-mass spectrometry. A reaction intermediate PABA·H+·NH3 was also detected for the first time. The reaction pathway search calculations and ab initio molecular dynamics simulations supported the present experimental finding that intramolecular proton transfer occurs very efficiently by the vehicle mechanism.

18.
J Phys Chem A ; 116(46): 11260-72, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-22834970

RESUMO

The laser-polarization effects on nonadiabatically coupled π-electron rotation (ring current) and molecular vibration have been theoretically analyzed for aromatic molecules with quasi-degenerate excited states irradiated by an ultrashort laser pulse of arbitrary polarization. We first derived general formulations of the coherent electronic wave packet and expectation value of electronic angular momentum within a frozen-nuclei model. The relative quantum phase of the superposed quasi-degenerate states, which determines the oscillating behavior of angular momentum, can be manipulated by the ellipticity and orientation of the incident laser. Nuclear wave packet simulations with a model molecule confirmed the controllability of π-electron rotation, although the angular momentum is gradually reduced by nonadiabatic couplings. The amplitude of molecular vibration depends prominently on the orientation of linear polarization vectors rather than the helicity of circular polarization. The characteristic feature in vibrational amplitudes is attributed to the interference in nonadiabatic transition governed by the relative quantum phase between nuclear wave packets. This offers a new strategy for laser control of molecular vibrations through the wave packet interference in nonadiabatic transition.

19.
J Phys Chem A ; 116(46): 11441-50, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-22994422

RESUMO

We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.


Assuntos
Pirenos/química , Teoria Quântica , Elétrons , Estrutura Molecular
20.
J Phys Chem A ; 116(9): 2177-83, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22332996

RESUMO

There have been a growing number of articles that report dramatic improvements in the experimental performance of chemical reactions by microwave irradiation compared to that under conventional heating conditions. We theoretically examined whether nonthermal microwave effects on intramolecular reactions exist or not, in particular, on Newman-Kwart rearrangements and intramolecular Diels-Alder reactions. The reaction rates of the former calculated by the transition state theory, which consider only the thermal effects of microwaves, agree quantitatively with experimental data, and thus, the increases in reaction rates can be ascribed to dielectric heating of the solvent by microwaves. In contrast, for the latter, the temperature dependence of reaction rates can be explained qualitatively by thermal effects but the possibility of nonthermal effects still remains regardless of whether competitive processes are present or not. The effective intramolecular potential energy surface in the presence of a microwave field suggests that nonthermal effects arising from potential distortion are vanishingly small in intramolecular reactions. It is useful in the elucidation of the reaction mechanisms of microwave synthesis to apply the present theoretical approach with reference to the experiments where thermal and nonthermal effects are separated by screening microwave fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA