Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2207105120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649409

RESUMO

Two species of rice have been independently domesticated from different ancestral wild species in Asia and Africa. Comparison of mutations that underlie phenotypic and physiological alterations associated with domestication traits in these species gives insights into the domestication history of rice in both regions. Asian cultivated rice, Oryza sativa, and African cultivated rice, Oryza glaberrima, have been modified and improved for common traits beneficial for humans, including erect plant architecture, nonshattering seeds, nonpigmented pericarp, and lack of awns. Independent mutations in orthologous genes associated with these traits have been documented in the two cultivated species. Contrary to this prevailing model, selection for awnlessness targeted different genes in O. sativa and O. glaberrima. We identify Regulator of Awn Elongation 3 (RAE3) a gene that encodes an E3 ubiquitin ligase and is responsible for the awnless phenotype only in O. glaberrima. A 48-bp deletion may disrupt the substrate recognition domain in RAE3 and diminish awn elongation. Sequencing analysis demonstrated low nucleotide diversity in a ~600-kb region around the derived rae3 allele on chromosome 6 in O. glaberrima compared with its wild progenitor. Identification of RAE3 sheds light on the molecular mechanism underlying awn development and provides an example of how selection on different genes can confer the same domestication phenotype in Asian and African rice.


Assuntos
Oryza , Humanos , Oryza/genética , Domesticação , Ubiquitina-Proteína Ligases/genética , Mutação , Sementes/genética
2.
Glob Chang Biol ; 27(11): 2343-2360, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33831231

RESUMO

Improved nitrogen (N) use is key to future food security and environmental sustainability. While many regions still experience N shortages, agriculture is the leading global emitter of N2 O due to losses exacerbated by N surpluses in other regions. In order to sustainably maintain or increase food production, farmers and their advisors need a comprehensive and actionable understanding of how nutrient management affects both yield and N2 O emissions, particularly in tropical and subtropical agroecosystems. We performed a meta-analysis to determine the effect of N management and other factors on N2 O emissions, plant N uptake, and yield. Our analysis demonstrates that performance indicators-partial N balance and partial factor productivity-predicted N2 O emissions as well as or better than N rate. While we observed consistent production and environmental benefits with enhanced-efficiency fertilizers, we noted potential trade-offs between yield and N2 O emissions for fertilizer placement. Furthermore, we observed confounding effects due to management dynamics that co-vary with nutrient application practices, thus challenging the interpretation of the effect of specific practices such as fertilization frequency. Therefore, rather than providing universally prescriptive management for N2 O emission reduction, our evidence supports mitigation strategies based upon tailored nutrient management approaches that keep N balances within safe limits, so as to minimize N2 O emissions while still achieving high crop yields. The limited evidence available suggests that these relationships hold for temperate, tropical, and subtropical regions, but given the potential for expansion of N use in crop production, further N2 O data collection should be prioritized in under-represented regions such as Sub-Saharan Africa.


Assuntos
Nitrogênio , Óxido Nitroso , África Subsaariana , Agricultura , Fertilizantes/análise , Óxido Nitroso/análise , Solo
3.
J Hered ; 109(3): 272-282, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28992295

RESUMO

Taro, Colocasia esculenta, is one of the world's oldest root crops and is of particular economic and cultural significance in Hawai'i, where historically more than 150 different landraces were grown. We developed a genome-wide set of more than 2400 high-quality single nucleotide polymorphism (SNP) markers from 70 taro accessions of Hawaiian, South Pacific, Palauan, and mainland Asian origins, with several objectives: 1) uncover the phylogenetic relationships between Hawaiian and other Pacific landraces, 2) shed light on the history of taro cultivation in Hawai'i, and 3) develop a tool to discriminate among Hawaiian and other taros. We found that almost all existing Hawaiian landraces fall into 5 monophyletic groups that are largely consistent with the traditional Hawaiian classification based on morphological characters, for example, leaf shape and petiole color. Genetic diversity was low within these clades but considerably higher between them. Population structure analyses further indicated that the diversification of taro in Hawai'i most likely occurred by a combination of frequent somatic mutation and occasional hybridization. Unexpectedly, the South Pacific accessions were found nested within the clades mainly composed of Hawaiian accessions, rather than paraphyletic to them. This suggests that the origin of clades identified here preceded the colonization of Hawai'i and that early Polynesian settlers brought taro landraces from different clades with them. In the absence of a sequenced genome, this marker set provides a valuable resource towards obtaining a genetic linkage map and to study the genetic basis of phenotypic traits of interest to taro breeding such as disease resistance.


Assuntos
Colocasia/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Havaí
4.
Front Plant Sci ; 15: 1304078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495376

RESUMO

Introduction: Sida fallax (Malvaceae) is the most widespread and variable taxon of Malvaceae in the Hawaiian Islands, growing with a diversity of morphological forms in different habitats including Midway Atoll, Nihoa, and all the main islands. Morphological variation exists within and among populations. The study aimed to investigate the genetic variation within and among populations from various habitats and geographic locations throughout the Hawaiian range of S. fallax. Methods: A total of 124 samples, with up to five samples per population where possible, were collected from 26 populations across six of the main Hawaiian Islands (Kaua'i, O'ahu, Maui, Moloka'i, Lana'i, and Hawai'i) and Nihoa in the Northwestern Hawaiian Islands. The sampling strategy encompassed collecting populations from different habitats and geographic locations, including coastal and mountain ecotypes, with many intermediate morphological forms. Multiplexed ISSR genotyping by sequencing (MIG-seq) was used to detect single nucleotide polymorphisms (SNP) and genetic differences among individuals and populations were evaluated using PCO analyses. Results: The relationship of FST with the geographical distance between the populations was assessed using the Mantel test. The results showed that populations on a single island were more closely related to each other and to populations on islands within their respective groups than they were to populations on other islands. Discussion: The overall genetic relationships among islands were, to a large extent, predictive based on island position within the chain and, to a lesser extent, within island topography.

5.
PNAS Nexus ; 2(10): pgad315, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881341

RESUMO

Wildfires ravage lands in seasonally dry regions, imposing high costs on infrastructure maintenance and human habitation at the wildland-urban interface. Current fire mitigation approaches present upfront costs with uncertain long-term payoffs. We show that a new landscape intervention on human-managed wildlands-buffers of a low-flammability crop species such as banana irrigated using recycled water-can mitigate wildfires and produce food profitably. This new intervention can complement existing fire mitigation approaches. Recreating a recent, major fire in simulation, we find that a medium-sized (633 m) banana buffer decreases fireline intensity by 96%, similar to the combination of prescribed burns and mechanical thinning, and delays the fire by 316 min, enabling safer and more effective firefighting. We find that under climate change, despite worsened fires, banana buffers will still have a protective effect. We also find that banana buffers with average yield could produce a profit of $56k USD/hectare through fruit sales, in addition to fire mitigation.

6.
Biochem Mol Biol Educ ; 51(5): 520-528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37401749

RESUMO

An explosion of data available in the life sciences has shifted the discipline toward genomics and quantitative data science research. Institutions of higher learning have been addressing this shift by modifying undergraduate curriculums resulting in an increasing number of bioinformatics courses and research opportunities for undergraduates. The goal of this study was to explore how a newly designed introductory bioinformatics seminar could leverage the combination of in-class instruction and independent research to build the practical skill sets of undergraduate students beginning their careers in the life sciences. Participants were surveyed to assess learning perceptions toward the dual curriculum. Most students had a neutral or positive interest in these topics before the seminar and reported increased interest after the seminar. Students had increases in confidence level in their bioinformatic proficiency and understanding of ethical principles for data/genomic science. By combining undergraduate research with directed bioinformatics skills, classroom seminars facilitated a connection between student's life sciences knowledge and emerging research tools in computational biology.


Assuntos
Biologia Computacional , Ciência de Dados , Humanos , Biologia Computacional/educação , Estudantes , Currículo , Genômica/educação
7.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293846

RESUMO

Crop wild relatives host unique adaptation strategies that enable them to thrive across a wide range of habitats. As pressures from a changing climate mount, a more complete understanding of the genetic variation that underlies this adaptation could enable broader utilization of wild materials for crop improvement. Here, we carry out environmental association analyses (EAA) in the Oryza rufipogon species complex (ORSC), the wild progenitor of cultivated Asian rice, to identify genomic regions associated with environmental adaptation characterized by variation in bioclimatic and soil variables. We further examine regions for colocalizations with phenotypic associations within the same collection. EAA results indicate that significant regions tend to associate with single environmental variables, although 2 significant loci on chromosomes 3 and 5 are detected as common across multiple variable types (i.e. precipitation, temperature, and/or soil). Distributions of allele frequencies at significant loci across subpopulations of cultivated Oryza sativa indicate that, in some cases, adaptive variation may already be present among cultivars, although evaluation in cultivated populations is needed to empirically test this. This work has implications for the potential utility of wild genetic resources in pre-breeding efforts for rice improvement.


Assuntos
Oryza , Oryza/genética , Variação Genética , Fenótipo , Melhoramento Vegetal , Genes de Plantas
8.
PNAS Nexus ; 2(4): pgad084, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113979

RESUMO

Agriculture is a designed system with the largest areal footprint of any human activity. In some cases, the designs within agriculture emerged over thousands of years, such as the use of rows for the spatial organization of crops. In other cases, designs were deliberately chosen and implemented over decades, as during the Green Revolution. Currently, much work in the agricultural sciences focuses on evaluating designs that could improve agriculture's sustainability. However, approaches to agricultural system design are diverse and fragmented, relying on individual intuition and discipline-specific methods to meet stakeholders' often semi-incompatible goals. This ad-hoc approach presents the risk that agricultural science will overlook nonobvious designs with large societal benefits. Here, we introduce a state space framework, a common approach from computer science, to address the problem of proposing and evaluating agricultural designs computationally. This approach overcomes limitations of current agricultural system design methods by enabling a general set of computational abstractions to explore and select from a very large agricultural design space, which can then be empirically tested.

9.
Mol Plant ; 16(10): 1518-1546, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37515323

RESUMO

The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.


Assuntos
Mudança Climática , Melhoramento Vegetal , Animais , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta
10.
Front Genet ; 14: 1168150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229195

RESUMO

Introduction: Genome-wide association studies (GWAS) have identified genetic markers for cattle production and reproduction traits. Several publications have reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in cattle, but these studies were rarely conducted in pasture-finished beef cattle. Hawai'i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed. Methods: Blood samples were collected from 400 cattle raised in Hawai'i islands at the commercial harvest facility. Genomic DNA was isolated, and 352 high-quality samples were genotyped using the Neogen GGP Bovine 100 K BeadChip. SNPs that did not meet the quality control standards were removed using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2. Four models were used for the GWAS analysis: General Linear Model (GLM), the Mixed Linear Model (MLM), the Fixed and Random Model Circulating Probability Unification (FarmCPU), the Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK). Results and Discussion: Our results indicated that the two multi-locus models, FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef herds in this study. Specifically, five significant SNPs were identified using FarmCPU, while BLINK and GLM each identified the other three. Also, three of these eleven SNPs ("BTA-40510-no-rs", "BovineHD1400006853", and "BovineHD2100020346") were shared by multiple models. The significant SNPs were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which were previously reported to be associated with carcass-related traits, growth, and feed intake in several tropical cattle breeds. This confirms that the genes identified in this study could be candidate genes for carcass weight in pasture-fed beef cattle and can be selected for further breeding programs to improve the carcass yield and productivity of pasture-finished beef cattle in Hawai'i and beyond.

11.
Ecol Evol ; 13(11): e10731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034338

RESUMO

Domestication is an ongoing well-described process. However, while many have studied the changes domestication causes in plant genetics, few have explored its impact on the portion of the geographic landscape in which the plants exist. Therefore, the goal of this study was to understand how the process of domestication changed the geographic space suitable for chile pepper (Capsicum annuum) in its center of origin (domestication). C. annuum is a major crop species globally whose center of domestication, Mexico, has been well-studied. It provides a unique opportunity to explore the degree to which ranges of different domestication classes diverged and how these ranges might be altered by climate change. To this end, we created ecological niche models for four domestication classes (wild, semiwild, landrace, modern cultivar) based on present climate and future climate scenarios for 2050, 2070, and 2090. Considering present environment, we found substantial overlap in the geographic niches of all the domestication classes. Yet, environmental and geographic aspects of the current ranges did vary among classes. Wild and commercial varieties could grow in desert conditions, while landraces could not. With projections into the future, habitat was lost asymmetrically, with wild, semiwild, and landraces at greater risk of territorial declines than modern cultivars. Further, we identified areas where future suitability overlap between landraces and wilds is expected to be lost. While range expansion is widely associated with domestication, we found little support of a constant niche expansion (either in environmental or geographical space) throughout the domestication gradient in chile peppers in Mexico. Instead, particular domestication transitions resulted in loss, followed by capturing or recapturing environmental or geographic space. The differences in environmental characterization among domestication gradient classes and their future potential range shifts increase the need for conservation efforts to preserve landraces and semiwild genotypes.

12.
BMC Res Notes ; 16(1): 20, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841789

RESUMO

BACKGROUND: Peppers, bell and chile, are a culturally and economically important worldwide. Domesticated Capsicum spp. are distributed globally and represent a complex of valuable genetic resources. OBJECTIVES: Explore population structure and diversity in a collection of 467 peppers representing eight species, spanning the spectrum from highly domesticated to wild using 22,916 SNP markers distributed across the twelve chromosomes of pepper. RESULTS: These species contained varied levels of genetic diversity, which also varied across chromosomes; the species also differ in the size of genetic bottlenecks they have experienced. We found that levels of diversity negatively correlate to levels of domestication, with the more diverse being the least domesticated.


Assuntos
Capsicum , Capsicum/química , Capsicum/genética , Frutas/química , Verduras , Chile
13.
Plant Direct ; 7(11): e541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028646

RESUMO

Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.

14.
Funct Integr Genomics ; 12(4): 671-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22527487

RESUMO

Regulation of gene transcription and post-transcriptional processes is critical for proper development, genome integrity, and stress responses in plants. Many genes involved in the key processes of transcriptional and post-transcriptional regulation have been well studied in model diploid organisms. However, gene and genome duplication may alter the function of the genes involved in these processes. To address this question, we assayed the stress-induced transcription patterns of duplicated gene pairs involved in RNAi and DNA methylation processes in the paleopolyploid soybean. Real-time quantitative PCR and Sequenom MassARRAY expression assays were used to profile the relative expression ratios of eight gene pairs across eight different biotic and abiotic stress conditions. The transcriptional responses to stress for genes involved in DNA methylation, RNAi processing, and miRNA processing were compared. The strongest evidence for pairwise co-expression in response to stresses was exhibited by non-paralogous Dicer-like (DCL) genes GmDCL2a-GmDCL3a and GmDCL1b-GmDCL2b, most profoundly in root tissues. Among homoeologous or paralogous DCL genes, the Dicer-like 2 (DCL2) gene pair exhibited the strongest response to stress and most conserved co-expression pattern. This was surprising because the DCL2 duplication event is more ancient than the other DCL duplications. Possible mechanisms that may be driving the DCL2 co-expression are discussed.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Ribonuclease III/genética , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Genes Duplicados , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/metabolismo , Poliploidia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribonuclease III/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
15.
Methods Mol Biol ; 2539: 159-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895203

RESUMO

Phenomics has emerged as the technology of choice for understanding quantitative genetic variation in plant physiology and plant breeding. Phenomics has allowed for unmatched precision in exploring plant life cycles and physiological patterns. As new technologies are developed, it is still vital to follow best practices for designing and planning to be able to fully exploit any experimental results. Here we describe the basic - but sometimes overlooked - considerations of a phenomics experiment to help you maximize the value from the data collected: choosing population and location, accounting for sources of variation, establishing a timeline, and leveraging ground-truth measurements.


Assuntos
Fenômica , Melhoramento Vegetal , Produtos Agrícolas/genética , Genômica/métodos , Fenótipo
16.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944211

RESUMO

Understanding the genetic basis of local adaptation in natural plant populations, particularly crop wild relatives, may be highly useful for plant breeding. By characterizing genetic variation for adaptation to potentially stressful environmental conditions, breeders can make targeted use of crop wild relatives to develop cultivars for novel or changing environments. This is especially appealing for improving long-lived woody perennial crops such as the American cranberry (Vaccinium macrocarpon Ait.), the cultivation of which is challenged by biotic and abiotic stresses. In this study, we used environmental association analyses in a collection of 111 wild cranberry accessions to identify potentially adaptive genomic regions for a range of bioclimatic and soil conditions. We detected 126 significant associations between SNP marker loci and environmental variables describing temperature, precipitation, and soil attributes. Many of these markers tagged genes with functional annotations strongly suggesting a role in adaptation to biotic or abiotic conditions. Despite relatively low genetic variation in cranberry, our results suggest that local adaptation to divergent environments is indeed present, and the identification of potentially adaptive genetic variation may enable a selective use of this germplasm for breeding more stress-tolerant cultivars.


Assuntos
Vaccinium macrocarpon , Frutas/genética , Genômica , Melhoramento Vegetal , Extratos Vegetais , Solo , Vaccinium macrocarpon/genética
17.
PLoS One ; 17(6): e0260684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700182

RESUMO

Global climate change is having a significant effect on agriculture by causing greater precipitation variability and an increased risk of drought. To mitigate these effects, it is important to identify specific traits, adaptations, and germplasm that improve tolerance to soil water deficit. Local varieties, known as landraces, have undergone generations of farmer-mediated selection and can serve as sources of variation, specifically for tolerance to abiotic stress. Landraces can possess local adaptations, where accessions adapted to a particular environment will outperform others grown under the same conditions. We explore adaptations to water deficit in chile pepper landraces from across an environmental gradient in Mexico, a center of crop domestication and diversity, as well in improved varieties bred for the US. In the present study, we evaluated 25 US and Mexico accessions in a greenhouse experiment under well-watered and water deficit conditions and measured morphological, physiological, and agronomic traits. Accession and irrigation regime influenced plant biomass and height, while branching, CO2 assimilation, and fruit weight were all influenced by an interaction between accession and irrigation. A priori group contrasts revealed possible adaptations to water deficit for branching, CO2 assimilation, and plant height associated with geographic origin, domestication level, and pepper species. Additionally, within the Mexican landraces, the number of primary branches had a strong relationship with precipitation from the environment of origin. This work provides insight into chile pepper response to water deficit and adaptation to drought and identifies possibly tolerant germplasm.


Assuntos
Capsicum , Dióxido de Carbono , Domesticação , Melhoramento Vegetal , Verduras , Água
18.
Plant Direct ; 6(9): e443, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091877

RESUMO

Calcium oxalate raphide crystals are found in bundles in intravacuolar membrane chambers of specialized idioblasts cells of most plant families. Aroid raphides are proposed to cause acridity in crops such as taro (Colocasia esculenta (L.) Schott). Acridity is irritation that causes itchiness and pain when raw/insufficiently cooked tissues are eaten. Since raphides do not always cause acridity and since acridity can be inactivated by cooking and/or protease treatment, it is possible that a toxin or allergen-like compound is associated with the crystals. Using two-dimensional (2D) gel electrophoresis and mass spectrometry (MS) peptide sequencing of selected peptides from purified raphides and taro apex transcriptome sequencing, we showed the presence on the raphides of peptides normally associated with mitochrondria (ATP synthase), chloroplasts (chaperonin ~60 kDa), cytoplasm (actin, profilin), and vacuole (V-type ATPase) that indicates a multistage biocrystallation process ending with possible invagination of the tonoplast and addition of mucilage that may be derived from the Golgi. Actin might play a crucial role in the generation of the needle-like raphides. One of the five raphide profilins genes was highly expressed in the apex and had a 17-amino acid insert that significantly increased that profilin's antigenic epitope peak. A second profilin had a 2-amino acid insert and also had a greater B-cell epitope prediction. Taro profilins showed 83% to 92% similarity to known characterized profilins. Further, commercial allergen test strips for hazelnuts, where profilin is a secondary allergen, have potential for screening in a taro germplasm to reduce acridity and during food processing to avoid overcooking.

19.
R Soc Open Sci ; 9(1): 211862, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35116168

RESUMO

Understanding the factors driving ecological and evolutionary interactions of economically important plant species is important for agricultural sustainability. The geography of crop wild relatives, including wild potatoes (Solanum section Petota), have received attention; however, such information has not been analysed in combination with phylogenetic histories, genomic composition and reproductive systems to identify potential species for use in breeding for abiotic stress tolerance. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-squares (PGLM) analyses to identify the discrete climate classes that make up the climate niche that wild potato species inhabit in the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid species significantly increase the number of discrete climate classes within a climate niche inhabited. This result was sustained when correcting for phylogenetic non-independence in the linear model. Our results support the idea that specific breeding system and ploidy combinations increase niche breadth through the decoupling of geographical range and niche diversity, and therefore, these species may be of particular interest for crop adaptation to a changing climate.

20.
Front Plant Sci ; 12: 626565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584776

RESUMO

The diversity observed among crop wild relatives (CWRs) and their ability to flourish in unfavorable and harsh environments have drawn the attention of plant scientists and breeders for many decades. However, it is also recognized that the benefit gained from using CWRs in breeding is a potential rose between thorns of detrimental genetic variation that is linked to the trait of interest. Despite the increased interest in CWRs, little attention was given so far to the statistical, analytical, and technical considerations that should guide the sampling design, the germplasm characterization, and later its implementation in breeding. Here, we review the entire process of sampling and identifying beneficial genetic variation in CWRs and the challenge of using it in breeding. The ability to detect beneficial genetic variation in CWRs is strongly affected by the sampling design which should be adjusted to the spatial and temporal variation of the target species, the trait of interest, and the analytical approach used. Moreover, linkage disequilibrium is a key factor that constrains the resolution of searching for beneficial alleles along the genome, and later, the ability to deplete linked deleterious genetic variation as a consequence of genetic drag. We also discuss how technological advances in genomics, phenomics, biotechnology, and data science can improve the ability to identify beneficial genetic variation in CWRs and to exploit it in strive for higher-yielding and sustainable crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA