Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114765

RESUMO

Efficient and low-cost solar-energy collection has become the focus of many research works. This paper proposes a recording method and an experimental verification of a wide-band, large-angle, and high concentration-ratio volume-holographic grating for solar concentration. We applied the Kogelnik coupled-wave theory and photopolymer diffusion model to analyse the formation mechanism and influencing factors on the diffraction efficiency of monochromatic volume-holographic gratings. We design and construct a three-color laser-interference system to record three monochromatic volume-holographic gratings. The best recording conditions are determined by experiment and simulation. A trichromatic volume-holographic grating is obtained by gluing the three monochromatic gratings together. The experimental results show that the trichromatic volume-holographic grating with a working angle of 6.7° and a working band of visible light has a light concentration ratio of 149.2 under an illumination of the combined recorded three-color beams, and that under sunlight is 27.2. We find that the proposed trichromatic volume-holographic grating for light concentration offers the advantages of wide band and high light concentration ratio, which provide a reference for solar concentration.

2.
Sensors (Basel) ; 20(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287169

RESUMO

A new double-layer sunlight concentration system, where each layer is divided into two regions, is proposed, and the system has four volume holograms. Since the four holograms convert light in different directions, the interlayer crosstalk is reduced, and the system has a high concentration ratio. The simulation results show that the concentration system can achieve a 30° operation angle range. The holograms are fabricated on photopolymer substrates, and the left half of the system is implemented using two holograms. The characteristics of the left half of the system are assessed. The agreement of the simulation and experimental results on diffraction efficiency validates the proposed method. The tested monochromatic concentration ratio can achieve a record of 418.8, and the concentration ratio under sunlight is 5.38. The experiment results of light use efficiency are close to the simulation with non-crosstalk, which indicates that the interlayer crosstalk is small.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA