Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 47(3): 561-564, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103671

RESUMO

We demonstrate a Si/SiO/SiO2-based period-chirped guided mode resonance (GMR) filter to discriminate telecom o-band wavelengths by spatially resolved horizontal movement. Continuously period-chirped silicon gratings were fabricated by using a Lloyd's laser interferometer with a convex mirror. Due to the large waveguide effective index, the GMR filter can be realized with a short grating period, thus enabling a slow grating period transition along the sample position and high optical resolution in wavelength discrimination. Depositing a SiO/SiO2 stack on top of silicon gratings enables a narrowband GMR filter with a linewidth of 1-1.5 nm over a wavelength range of 1260-1360 nm. By using the chirped GMR filter as a dispersive device, the optical spectra of a near-infrared broadband light source are reconstructed. An optimized aspheric mirror is proposed to further improve the linearity of chirped gratings. Such a period-chirped GMR filter is promising for compact on-chip spectroscopy and sensing applications.

2.
Opt Express ; 26(21): 27515-27527, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469817

RESUMO

In this work we introduce a tunable GMR filter based on continuously period-chirped (ΔP = 130 nm) gratings using a Ta2O5 waveguide layer with graded thickness (ΔT = 36 nm). The structure of the gradient-period grating is defined using a modified Lloyd's mirror interferometer with a convex mirror, and Ta2O5 film used for the gradient is deposited using masked e-beam evaporation. The as-realized chirped GMR filter provides sharp transmission dips at resonant wavelengths with a filter bandwidth of approximately 4.2 nm and 0.78 nm when respectively applied to TE and TM polarized light under normal incidence. Gradually sweeping the chirped GMR filter makes it possible to monotonically sweep through resonant wavelengths from 500 to 700 nm, while maintaining stable filter bandwidth and transmission intensity. The optical spectrum of the incoming light can then be loyally reconstructed accordingly. We successfully demonstrate the spectrum reconstruction of a white light emitting diode and a dual-peak laser beam using the proposed chirped GMR filter as a dispersive device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA