Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(42): e2211244119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215485

RESUMO

Desert-inhabiting cyanobacteria can tolerate extreme desiccation and quickly revive after rehydration. The regulatory mechanisms that enable their vegetative cells to resurrect upon rehydration are poorly understood. In this study, we identified a single gene family of high light-inducible proteins (Hlips) with dramatic expansion in the Nostoc flagelliforme genome and found an intriguingly special convergence formed through four tandem gene duplication. The emerged four independent hlip genes form a gene cluster (hlips-cluster) and respond to dehydration positively. The gene mutants in N. flagelliforme were successfully generated by using gene-editing technology. Phenotypic analysis showed that the desiccation tolerance of hlips-cluster-deleted mutant decreased significantly due to impaired photosystem II repair, whereas heterologous expression of hlips-cluster from N. flagelliforme enhanced desiccation tolerance in Nostoc sp. PCC 7120. Furthermore, a transcription factor Hrf1 (hlips-cluster repressor factor 1) was identified and shown to coordinately regulate the expression of hlips-cluster and desiccation-induced psbAs. Hrf1 acts as a negative regulator for the adaptation of N. flagelliforme to the harsh desert environment. Phylogenetic analysis revealed that most species in the Nostoc genus possess both tandemly repeated Hlips and Hrf1. Our results suggest convergent evolution of desiccation tolerance through the coevolution of tandem Hlips duplication and Hrf1 in subaerial Nostoc species, providing insights into the mechanism of desiccation tolerance in photosynthetic organisms.


Assuntos
Nostoc , Complexo de Proteína do Fotossistema II , Dessecação , Nostoc/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Fatores de Transcrição/metabolismo
2.
J Mol Cell Cardiol ; 195: 68-72, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053573

RESUMO

Heart Failure with preserved ejection fraction (HFpEF) has a high rate of sudden cardiac death (SCD) and empirical treatment is ineffective. We developed a novel preclinical model of metabolic HFpEF that presents with stress-induced ventricular tachycardia (VT). Mechanistically, we discovered arrhythmogenic changes in intracellular Ca2+ handling distinct from the changes pathognomonic for heart failure with reduced ejection fraction. We further show that dantrolene, a stabilizer of the ryanodine receptor Ca2+ channel, attenuates HFpEF-associated arrhythmogenic Ca2+ handling in vitro and suppresses stress-induced VT in vivo. We propose ryanodine receptor stabilization as a mechanistic approach to mitigation of malignant VT in metabolic HFpEF.


Assuntos
Arritmias Cardíacas , Cálcio , Dantroleno , Modelos Animais de Doenças , Insuficiência Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Dantroleno/farmacologia , Volume Sistólico/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/tratamento farmacológico , Camundongos , Masculino , Sinalização do Cálcio/efeitos dos fármacos
3.
Annu Rev Phys Chem ; 74: 193-218, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36696591

RESUMO

Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that (a) the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and (b) fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development.

4.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587222

RESUMO

Density functional approximations to the exchange-correlation energy can often identify strongly correlated systems and estimate their energetics through energy-minimizing symmetry-breaking. In particular, the binding energy curve of the strongly correlated chromium dimer is described qualitatively by the local spin density approximation (LSDA) and almost quantitatively by the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), where the symmetry breaking is antiferromagnetic for both. Here, we show that a full Perdew-Zunger self-interaction-correction (SIC) to LSDA seems to go too far by creating an unphysical symmetry-broken state, with effectively zero magnetic moment but non-zero spin density on each atom, which lies ∼4 eV below the antiferromagnetic solution. A similar symmetry-breaking, observed in the atom, better corresponds to the 3d↑↑4s↑3d↓↓4s↓ configuration than to the standard 3d↑↑↑↑↑4s↑. For this new solution, the total energy of the dimer at its observed bond length is higher than that of the separated atoms. These results can be regarded as qualitative evidence that the SIC needs to be scaled down in many-electron regions.

5.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472975

RESUMO

Strong correlations within a symmetry-unbroken ground-state wavefunction can show up in approximate density functional theory as symmetry-broken spin densities or total densities, which are sometimes observable. They can arise from soft modes of fluctuations (sometimes collective excitations) such as spin-density or charge-density waves at nonzero wavevector. In this sense, an approximate density functional for exchange and correlation that breaks symmetry can be more revealing (albeit less accurate) than an exact functional that does not. The examples discussed here include the stretched H2 molecule, antiferromagnetic solids, and the static charge-density wave/Wigner crystal phase of a low-density jellium. Time-dependent density functional theory is used to show quantitatively that the static charge-density wave is a soft plasmon. More precisely, the frequency of a related density fluctuation drops to zero, as found from the frequency moments of the spectral function, calculated from a recent constraint-based wavevector- and frequency-dependent jellium exchange-correlation kernel.

6.
J Phys Chem A ; 127(1): 384-389, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36573497

RESUMO

The SCAN (strongly constrained and appropriately normed) meta-generalized gradient approximation (meta-GGA), which satisfies all 17 exact constraints that a meta-GGA can satisfy, accurately describes equilibrium bonds that are normally correlated. With symmetry breaking, it also accurately describes some sd equilibrium bonds that are strongly correlated. While sp equilibrium bonds are nearly always normally correlated, the C2 singlet ground state is known from correlated wave function theory to be a rare case of strong correlation in an sp equilibrium bond. Earlier work that calculated atomization energies of the molecular sequence B2, C2, O2, and F2 in the local spin density approximation (LSDA), the Perdew-Burke-Ernzerhof (PBE) GGA, and the SCAN meta-GGA, without symmetry breaking in the molecule, found that only SCAN was accurate enough to reveal an anomalous under-binding for C2. This work shows that spin symmetry breaking in singlet C2, which involves the appearance of net up- and down-spin densities on opposite sides (not ends) of the bond, corrects that underbinding, with a small SCAN atomization-energy error more like that of the other three molecules, suggesting that symmetry breaking with an advanced density functional might reliably describe strong correlation. This article also discusses some general aspects of symmetry breaking and the insights into strong correlation that symmetry breaking can bring. The normally correlated low-lying triplet excited state has the right vertical excitation energy in SCAN but not in LSDA or PBE, where the triplet is a false ground state. Fractional occupation numbers are found only for the symmetry-unbroken singlet and only in LSDA and PBE GGA.

7.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38088433

RESUMO

Time-dependent density functional theory within the linear response regime provides a solid mathematical framework to capture excitations. The accuracy of the theory, however, largely depends on the approximations for the exchange-correlation (xc) kernels. Away from the long-wavelength (or q = 0 short wave-vector) and zero-frequency (ω = 0) limit, the correlation contribution to the kernel becomes more relevant and dominant over exchange. The dielectric function, in principle, can encompass xc effects relevant to describe low-density physics. Furthermore, besides collective plasmon excitations, the dielectric function can reveal collective electron-hole excitations, often dubbed "ghost excitons." Besides collective excitons, the physics of the low-density regime is rich, as exemplified by a static charge-density wave that was recently found for rs > 69, and was shown to be associated with softening of the plasmon mode. These excitations are seen to be present in much higher density 2D homogeneous electron gases of rs ≳ 4. In this work, we perform a thorough analysis with xc model kernels for excitations of various nature. The uniform electron gas, as a useful model of real metallic systems, is used as a platform for our analysis. We highlight the relevance of exact constraints as we display and explain screening and excitations in the low-density region.

8.
Curr Pain Headache Rep ; 27(3): 27-38, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36881288

RESUMO

PURPOSE OF REVIEW: Aneurysmal subarachnoid hemorrhage carries high mortality and morbidity. Quality improvement (QI) efforts in the management of this disease process are growing as the field of neurocritical care matures. This review provides updates in QI in subarachnoid hemorrhage (SAH) and discusses gaps and future directions. RECENT FINDINGS: Literature published on the topic over the past 3 years were evaluated. An assessment of current QI practices pertaining to the acute care of SAH was conducted. These include processes surrounding acute pain management, inter-hospital coordination of care, complications during the initial hospital stay, role of palliative care, and quality metrics collection, reporting, and monitoring. SAH QI initiatives have shown promise by decreasing ICU and hospital lengths of stay, health care costs, and hospital complications. The review reveals substantial heterogeneity, variability, and limitations in SAH QI protocols, measures, and reporting. Uniformity in QI research, implementation, and monitoring will be crucial as disease-specific QI develops in neurological care.


Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/terapia , Melhoria de Qualidade , Cuidados Críticos/métodos , Manejo da Dor , Tempo de Internação
9.
Catheter Cardiovasc Interv ; 99(6): 1784-1788, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35485732

RESUMO

The development of new technology to treat unmet clinical needs is an important component of modern cardiovascular disease. The need for this has been emphasized in the past several years beginning with the Food and Drug Administration (FDA) guidance document on Early Feasibility Studies in 2012 and then the 21st Century Cures legislation. A number of steps need to be considered in this process by the stakeholders involved including physician innovators and scientists, professional societies such as Society for Cardiovascular Angiography & Interventions, regulatory agencies, and medical device companies. This article focuses on the early iterative steps required to optimize the process and achieve the goal of timely efficient innovation and device development in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Aprovação de Equipamentos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Estudos de Viabilidade , Humanos , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration
10.
Curr Oncol Rep ; 24(3): 343-350, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35138599

RESUMO

PURPOSE OF REVIEW: The goal of this paper is to provide a review on the current emerging management strategies as described in the literature pertaining to breast cancer and central nervous system metastases. As systemic oncology treatments evolve, so are new approaches to the management of central nervous system metastases from breast cancer. RECENT FINDINGS: In this review, we describe how novel treatment strategies have evolved from standard chemotherapy to more targeted approaches, innovative drug delivery methodologies, immunotherapeutics, and radiotherapeutic approaches. We describe innovative treatment strategies on the horizon for breast cancer and central nervous metastases. Future therapeutics may be better able to penetrate through the blood-brain-barrier bypassing limitations from standard therapies. These pioneering strategies will hopefully improve patients' quality of life as well as survival.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias do Sistema Nervoso Central , Segunda Neoplasia Primária , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/terapia , Feminino , Humanos , Qualidade de Vida
11.
J Chem Phys ; 156(3): 034109, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065548

RESUMO

The strongly constrained and appropriately normed (SCAN) meta-GGA exchange-correlation functional [Sun et al., Phys. Rev. Lett. 115, 036402 (2015)] is constructed as a chemical environment-determined interpolation between two separate energy densities: one describes single-orbital electron densities accurately and another describes slowly varying densities accurately. To conserve constraints known for the exact exchange-correlation functional, the derivatives of this interpolation vanish in the slowly varying limit. While theoretically convenient, this choice introduces numerical challenges that degrade the functional's efficiency. We have recently reported a modification to the SCAN meta-GGA, termed restored-regularized-SCAN (r2SCAN) [Furness et al., J. Phys. Chem. Lett. 11, 8208 (2020)], that introduces two regularizations into SCAN, which improve its numerical performance at the expense of not recovering the fourth order term of the slowly varying density gradient expansion for exchange. Here, we show the derivation of a progression of density functional approximations [regularized SCAN (rSCAN), r++SCAN, r2SCAN, and r4SCAN] with increasing adherence to exact conditions while maintaining a smooth interpolation. The greater smoothness of r2SCAN seems to lead to better general accuracy than the additional exact constraint of SCAN or r4SCAN does.

12.
Photosynth Res ; 147(3): 329-344, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389446

RESUMO

The green alga Chlorella ohadii was isolated from a desert biological soil crust, one of the harshest environments on Earth. When grown under optimal laboratory settings it shows the fastest growth rate ever reported for a photosynthetic eukaryote and a complete resistance to photodamage even under unnaturally high light intensities. Here we examined the energy distribution along the photosynthetic pathway under four light and carbon regimes. This was performed using various methodologies such as membrane inlet mass spectrometer with stable O2 isotopes, variable fluorescence, electrochromic shift and fluorescence assessment of NADPH level, as well as the use of specific inhibitors. We show that the preceding illumination and CO2 level during growth strongly affect the energy dissipation strategies employed by the cell. For example, plastid terminal oxidase (PTOX) plays an important role in energy dissipation, particularly in high light- and low-CO2-grown cells. Of particular note is the reliance on PSII cyclic electron flow as an effective and flexible dissipation mechanism in all conditions tested. The energy management observed here may be unique to C. ohadii, as it is the only known organism to cope with such conditions. However, the strategies demonstrated may provide an insight into the processes necessary for photosynthesis under high-light conditions.


Assuntos
Chlorella/efeitos da radiação , Luz , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Dióxido de Carbono , Chlorella/classificação , Chlorella/fisiologia , Clima Desértico , Fluorescência , NADP/química , Isótopos de Oxigênio , Complexo de Proteína do Fotossistema II , Transpiração Vegetal , Especificidade da Espécie
13.
J Chem Phys ; 154(6): 061101, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588552

RESUMO

We combine a regularized variant of the strongly constrained and appropriately normed semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] with the latest generation semi-classical London dispersion correction. The resulting density functional approximation r2SCAN-D4 has the speed of generalized gradient approximations while approaching the accuracy of hybrid functionals for general chemical applications. We demonstrate its numerical robustness in real-life settings and benchmark molecular geometries, general main group and organo-metallic thermochemistry, and non-covalent interactions in supramolecular complexes and molecular crystals. Main group and transition metal bond lengths have errors of just 0.8%, which is competitive with hybrid functionals for main group molecules and outperforms them for transition metal complexes. The weighted mean absolute deviation (WTMAD2) on the large GMTKN55 database of chemical properties is exceptionally small at 7.5 kcal/mol. This also holds for metal organic reactions with an MAD of 3.3 kcal/mol. The versatile applicability to organic and metal-organic systems transfers to condensed systems, where lattice energies of molecular crystals are within the chemical accuracy (errors <1 kcal/mol).

14.
Acta Neurochir Suppl ; 131: 59-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839819

RESUMO

OBJECTIVE: This study aimed to examine whether changes in intracranial pressure (ICP) waveform morphologies can be used as a biomarker for early detection of ventriculitis. METHODS: Consecutive patients (N = 1653) were prospectively enrolled in a hemorrhage outcomes study from 2006 to 2018. Of these, 435 patients (26%) required external ventricular drains (EVDs) and 76 (17.5% of those with EVDs) had ventriculitis treated with antibiotics. Nineteen patients (25% of those with ventriculitis) showed culture-positive cerebrospinal fluid (CSF) and were included in the present analysis. CSF was routinely cultured three times per week and additionally if infection was suspected. EVDs were left open for drainage, with ICP assessed hourly by clamping. Using wavelet analysis, we extracted uninterrupted segments of ICP waveforms. We extracted dominant pulses from continuous high-resolution data, using morphological clustering analysis of intracranial pressure (MOCAIP). Then we applied k-means clustering, using the dynamic time warping distance to obtain morphologically similar groupings. Finally, metaclusters and further-split clusters (when equipoise existed) were categorized for broad comparison by clinician consensus. RESULTS: We extracted 275,911 dominant pulses from 459.9 h of EVD data. Of these, 112,898 pulses (40.9%) occurred before culture positivity, 41,300 pulses (15.0%) occurred during culture positivity, and 121,713 pulses (44.1%) occurred after it. K-means identified 20 clusters, which were further grouped into metaclusters: tri-/biphasic, single-peak, and artifactual waveforms. Prior to ventriculitis, 61.8% of dominant pulses were tri-/biphasic; this percentage reduced to 22.6% during ventriculitis and 28.4% after it (p < 0.0001). One day before the first positive cultures were collected, the distribution of metaclusters changed to include more single-peak and artifactual ICP waveforms (p < 0.0001). CONCLUSION: The distribution of ICP waveform morphology changes significantly prior to clinical diagnosis of ventriculitis and may be a potential biomarker.


Assuntos
Ventriculite Cerebral , Pressão Intracraniana , Antibacterianos , Ventriculite Cerebral/diagnóstico , Análise por Conglomerados , Drenagem , Humanos
15.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638854

RESUMO

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more than 33 million people worldwide. Despite important advances in therapy, AF's incidence remains high, and treatment often results in recurrence of the arrhythmia. A better understanding of the cellular and molecular changes that (1) trigger AF and (2) occur after the onset of AF will help to identify novel therapeutic targets. Over the past 20 years, a large body of research has shown that intracellular Ca2+ handling is dramatically altered in AF. While some of these changes are arrhythmogenic, other changes counteract cellular arrhythmogenic mechanisms (Calcium Signaling Silencing). The intracellular Na+ concentration ([Na+])i is a key regulator of intracellular Ca2+ handling in cardiac myocytes. Despite its importance in the regulation of intracellular Ca2+ handling, little is known about [Na+]i, its regulation, and how it might be changed in AF. Previous work suggests that there might be increases in the late component of the atrial Na+ current (INa,L) in AF, suggesting that [Na+]i levels might be high in AF. Indeed, a pharmacological blockade of INa,L has been suggested as a treatment for AF. Here, we review calcium signaling silencing and changes in intracellular Na+ homeostasis during AF. We summarize the proposed arrhythmogenic mechanisms associated with increases in INa,L during AF and discuss the evidence from clinical trials that have tested the pharmacological INa,L blocker ranolazine in the treatment of AF.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Homeostase/fisiologia , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Animais , Fibrilação Atrial/fisiopatologia , Humanos , Miócitos Cardíacos/citologia , Sarcolema/metabolismo , Trocador de Sódio e Cálcio/metabolismo
16.
J Chem Phys ; 153(7): 074114, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828077

RESUMO

Exact density functionals for the exchange and correlation energies are approximated in practical calculations for the ground-state electronic structure of a many-electron system. An important exact constraint for the construction of approximations is to recover the correct non-relativistic large-Z expansions for the corresponding energies of neutral atoms with atomic number Z and electron number N = Z, which are correct to the leading order (-0.221Z5/3 and -0.021Z ln Z, respectively) even in the lowest-rung or local density approximation. We find that hydrogenic densities lead to Ex(N, Z) ≈ -0.354N2/3Z (as known before only for Z ≫ N ≫ 1) and Ec ≈ -0.02N ln N. These asymptotic estimates are most correct for atomic ions with large N and Z ≫ N, but we find that they are qualitatively and semi-quantitatively correct even for small N and N ≈ Z. The large-N asymptotic behavior of the energy is pre-figured in small-N atoms and atomic ions, supporting the argument that widely predictive approximate density functionals should be designed to recover the correct asymptotics. It is shown that the exact Kohn-Sham correlation energy, when calculated from the pure ground-state wavefunction, should have no contribution proportional to Z in the Z → ∞ limit for any fixed N.

17.
Environ Microbiol ; 21(3): 1140-1150, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30761715

RESUMO

Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.


Assuntos
Aeromonas veronii/fisiologia , Microcystis/fisiologia , Aeromonas/fisiologia , Antibiose/fisiologia , Meios de Cultura , Lagos/microbiologia , Microcystis/metabolismo
18.
New Phytol ; 222(1): 206-217, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30383301

RESUMO

Carbonic anhydrases (CAs) are involved in CO2 uptake and conversion, a fundamental process in photosynthetic organisms. Nevertheless, the mechanism underlying the regulation of CO2 uptake and intracellular conversion in cyanobacteria is largely unknown. We report the characterization of a previously unrecognized thylakoid-located CA Slr0051 (EcaB) from the cyanobacterium Synechocystis sp. PCC 6803, which possesses CA activity to regulate CO2 uptake. Inactivation of ecaB stimulated CO2 hydration in the thylakoids, suppressed by the classical CA inhibitor acetazolamide. Absence of ecaB increased the reduced state of the photosynthetic electron transport system, lowered the rate of photosynthetic O2 evolution at high light (HL) and pH, and decreased the cellular affinity for extracellular inorganic carbon. Furthermore, EcaB was upregulated in cells grown at limiting CO2 concentration or HL in tandem with CupA. EcaB is mainly located in the thylakoid membranes where it interacts with CupA and CupB involved in CO2 uptake by converting it to bicarbonate. We propose that modulation of the EcaB level and activity in response to CO2 changes, illumination or pH reversibly regulates its conversion to HCO3 by the two CO2 -uptake systems (CupA, CupB), dissipating the excess HCO3- and alleviating photoinhibition, and thereby optimizes photosynthesis, especially under HL and alkaline conditions.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Synechocystis/metabolismo , Tilacoides/enzimologia , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Biocatálise , Concentração de Íons de Hidrogênio , Luz , Mutação/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Synechocystis/crescimento & desenvolvimento , Tilacoides/metabolismo , Regulação para Cima/efeitos da radiação
19.
Mol Ecol ; 28(9): 2305-2320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31025457

RESUMO

Cyanobacteria inhabiting desert biological soil crusts must prepare towards dehydration, or their revival after rewetting is severely impaired. The mechanisms involved are unknown but signalling of forthcoming dehydration by dawn illumination was demonstrated. Accurate and reproducible simulation of desert conditions enabled examination of physiological activities and transcript profiles in a model organism, Leptolyngbya ohadii, in response to specific conditions. Exposure to far red light or lack of ground warming during dawn severely reduced revival after rewetting and altered the network of gene expression. The data implicated phytochromes in light and temperature sensing. Many genes were up- or down-regulated before water content decline, while others were strongly affected by the progression of dehydration and desiccation. Transcription continues during the desiccated phase but only barely during early rewetting, although photosynthetic activity was regained. Application of rifampicin with or without a preceding dehydration phase demonstrated that RNA is stabilized/protected during desiccation, possibly by intrinsically disordered proteins. We conclude that increasing light and temperature at dawn activates a network of genes that prepare the cells towards dehydration. Quick resumption of photosynthesis upon rewetting in contrast to the slow change in the transcript profile suggested that in addition to preparing towards dehydration the cells also prepare for forthcoming rewetting, during dehydration. Unravelling the presently unknown function of many responding genes will help to clarify the networks involved.


Assuntos
Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/efeitos dos fármacos , Desidratação , Clima Desértico , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Luz , Fotossíntese/fisiologia , Rifampina/farmacologia , Microbiologia do Solo , Temperatura , Trealose , Água
20.
Photosynth Res ; 137(2): 263-280, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29572588

RESUMO

Diatoms are unicellular algae and important primary producers. The process of carbon fixation in diatoms is very efficient even though the availability of dissolved CO2 in sea water is very low. The operation of a carbon concentrating mechanism (CCM) also makes the more abundant bicarbonate accessible for photosynthetic carbon fixation. Diatoms possess carbonic anhydrases as well as metabolic enzymes potentially involved in C4 pathways; however, the question as to whether a C4 pathway plays a general role in diatoms is not yet solved. While genome analyses indicate that the diatom Phaeodactylum tricornutum possesses all the enzymes required to operate a C4 pathway, silencing of the pyruvate orthophosphate dikinase (PPDK) in a genetically transformed cell line does not lead to reduced photosynthetic carbon fixation. In this study, we have determined the intracellular location of all enzymes potentially involved in C4-like carbon fixing pathways in P. tricornutum by expression of the respective proteins fused to green fluorescent protein (GFP), followed by fluorescence microscopy. Furthermore, we compared the results to known pathways and locations of enzymes in higher plants performing C3 or C4 photosynthesis. This approach revealed that the intracellular distribution of the investigated enzymes is quite different from the one observed in higher plants. In particular, the apparent lack of a plastidic decarboxylase in P. tricornutum indicates that this diatom does not perform a C4-like CCM.


Assuntos
Diatomáceas/enzimologia , Diatomáceas/fisiologia , Fotossíntese/fisiologia , Arabidopsis/fisiologia , Ciclo do Carbono , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/enzimologia , Fosfoenolpiruvato Carboxilase/classificação , Fosfoenolpiruvato Carboxilase/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA