Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Pharmacol Res ; 185: 106470, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202183

RESUMO

Difelikefalin is a peripherally restricted kappa opioid receptor (KOR) agonist that was recently approved by the FDA to treat pruritis in dialysis patients. Here, we investigated the cardiovascular and renal responses to difelikefalin, and using the KOR antagonist norbinaltorphimine (norBNI), examined whether any difelikefalin-induced changes in the renal excretion of water and/or electrolytes were mediated through a central or peripheral KOR pathway. The effects of norBNI pretreatment on nalfurafine, a KOR agonist that crosses the blood-brain barrier, were also examined. We hypothesized that difelikefalin would alter urine output differently than nalfurafine, given that KOR agonists produce diuresis via activating central KORs to inhibit vasopressin release. Following catheterization, conscious Sprague-Dawley rats were infused i.v. with isotonic saline and pretreated with norBNI centrally via an intracerebroventricular (ICV) cannula or peripherally via an intravenous catheter. After stabilization, difelikefalin or nalfurafine was administered i.v. and urine output, heart rate and mean arterial pressure (MAP) were recorded for 90 min. Difelikefalin produced a significant increase in urine output, and significant decrease in urinary sodium and potassium excretion, urine osmolality, and MAP. ICV norBNI pretreatment markedly attenuated the increase in urine output caused by difelikefalin and nalfurafine but did not inhibit the electrolyte effects. However, IV norBNI pretreatment prevented all responses to difelikefalin and nalfurafine. Together, these findings demonstrate that difelikefalin and nalfurafine utilize central KOR pathways to elicit diuresis and a decrease in MAP but enhance renal tubular electrolyte reabsorption through a peripheral KOR pathway, providing important insight into two clinically useful KOR agonists.


Assuntos
Diurese , Receptores Opioides kappa , Animais , Ratos , Receptores Opioides kappa/metabolismo , Ratos Sprague-Dawley , Analgésicos Opioides/farmacologia
2.
Circ Res ; 119(3): 470-80, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27296507

RESUMO

RATIONALE: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure. OBJECTIVE: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion injury via direct effects on the myocardium. METHODS AND RESULTS: Spontaneously hypertensive rats received either bilateral RF-RDN or sham-RDN. At 4 weeks after RF-RDN (n=14) or sham-RDN (n=14) treatment, spontaneously hypertensive rats were subjected to 30 minutes of transient coronary artery occlusion and 24 hours -7 days reperfusion. Four weeks after RF-RDN, myocardial oxidative stress was markedly attenuated, and transcription and translation of antioxidants, superoxide dismutase 1 and glutathione peroxidase-1, were significantly upregulated compared with sham-RDN spontaneously hypertensive rats. RF-RDN also inhibited myocardial G protein-coupled receptor kinase 2 pathological signaling and enhanced myocardial endothelial nitric oxide synthase function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area at risk compared with sham-RDN (26.8 versus 43.9%; P<0.01) at 24 hours postreperfusion and significantly improved left ventricular function at 7 days after myocardial ischemia/reperfusion. CONCLUSIONS: RF-RDN reduced oxidative stress, inhibited G protein-coupled receptor kinase 2 signaling, increased nitric oxide bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic injury.


Assuntos
Ablação por Cateter/métodos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Rim/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Óxido Nítrico/biossíntese , Animais , Denervação/métodos , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Rim/inervação , Rim/cirurgia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/fisiologia
3.
J Am Heart Assoc ; 13(4): e032646, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38353216

RESUMO

BACKGROUND: The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS: Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1ß, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS: Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.


Assuntos
Insuficiência Cardíaca , Humanos , Masculino , Ratos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Tirosina 3-Mono-Oxigenase/metabolismo , Rim/metabolismo , Simpatectomia/métodos , Inflamação/metabolismo , Norepinefrina , Fibrose , Denervação
4.
FASEB J ; 26(7): 2776-87, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22459149

RESUMO

Fluid and electrolyte homeostasis is integral to blood pressure regulation. However, the central molecular mechanisms regulating the neural control of sodium excretion remain unclear. We have demonstrated that brain Gαi(2)-subunit protein pathways mediate the natriuretic response to α(2)-adrenoreceptor activation in vivo. Consequently, we examined the role of brain Gαi(2) proteins in the neural mechanisms facilitating fluid and electrolyte homeostasis in response to acute [i.v. volume expansion (VE)] or chronic stressful stimuli (dietary sodium restriction vs. supplementation) in conscious Sprague-Dawley rats. Selective oligodeoxynucleotide (ODN)-mediated down-regulation of brain Gαi(2) proteins, but not a scrambled ODN, abolished the renal sympathoinhibitory response and attenuated the natriuresis to VE. In scrambled ODN-treated rats, chronic changes in dietary sodium intake evoked an endogenous, hypothalamic paraventricular nucleus (PVN)-specific, decrease (sodium deficiency) or increase (sodium excess) in PVN Gαi(2) proteins; plasma norepinephrine levels were inversely related to dietary sodium content. Finally, in rats treated with an ODN to prevent high salt-induced up-regulation of brain Gαi(2) proteins, animals exhibited sodium retention, global sympathoexcitation, and elevated blood pressure. Collectively, these data demonstrate that PVN Gαi(2) protein pathways play an endogenous role in maintaining fluid and electrolyte balance by controlling the influence the sympathetic nervous system has on the renal handling of sodium.


Assuntos
Encéfalo/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Sequência de Bases , Diurese , Regulação para Baixo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Homeostase , Rim/fisiologia , Masculino , Natriurese , Sondas de Oligonucleotídeos/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sódio na Dieta/administração & dosagem , Estresse Fisiológico , Sistema Nervoso Simpático/fisiologia
5.
FASEB J ; 26(2): 947-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038051

RESUMO

Computational methods have led two groups to predict the endogenous presence of a highly conserved, amidated, 14-aa neuropeptide called either spexin or NPQ. NPQ/spexin is part of a larger prohormone that contains 3 sets of RR residues, suggesting that it could yield more than one bioactive peptide; however, no in vivo activity has been demonstrated for any peptide processed from this precursor. Here we demonstrate biological activity for two peptides present within proNPQ/spexin. NPQ/spexin (NWTPQAMLYLKGAQ-NH(2)) and NPQ 53-70 (FISDQSRRKDLSDRPLPE) have differing renal and cardiovascular effects when administered intracerebroventricularly or intravenously into rats. Intracerebroventricular injection of NPQ/spexin produced a 13 ± 2 mmHg increase in mean arterial pressure, a 38 ± 8 bpm decrease in heart rate, and a profound decrease in urine flow rate. Intracerebroventricular administration of NPQ 53-70 produced a 26 ± 9 bpm decrease in heart rate with no change in mean arterial pressure, and a marked increase in urine flow rate. Intraventricular NPQ/spexin and NPQ 53-70 also produced antinociceptive activity in the warm water tail withdrawal assay in mice (ED(50)<30 and 10 nmol for NPQ/spexin and NPQ 53-70, respectively). We conclude that newly identified peptides derived from the NPQ/spexin precursor contribute to CNS-mediated control of arterial blood pressure and salt and water balance and modulate nociceptive responses.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Rim/fisiologia , Neuropeptídeos/fisiologia , Nociceptividade/fisiologia , Hormônios Peptídicos/fisiologia , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Humanos , Injeções Intraventriculares , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Neuropeptídeos/administração & dosagem , Neuropeptídeos/genética , Nociceptividade/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/genética , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
6.
Curr Hypertens Rep ; 15(3): 175-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23588856

RESUMO

Elevated serum uric acid concentration is a common laboratory finding in subjects with metabolic syndrome/obesity, hypertension, kidney disease and cardiovascular events. Hyperuricemia has been attributed to hyperinsulinemia in metabolic syndrome and to decreased uric acid excretion in kidney dysfunction, and is not acknowledged as a main mediator of metabolic syndrome, renal disease, and cardiovascular disorder development. However, more recent investigations have altered this traditional view and shown, by providing compelling evidence, to support an independent link between hyperuricemia and increased risk of metabolic syndrome, diabetes, hypertension, kidney disease and cardiovascular disorders. However, despite these new findings, controversy regarding the exact role of uric acid in inducing these diseases remains to be unfolded. Furthermore, recent data suggest that the high-fructose diet in the United State, as a major cause of hyperuricemia, may be contributing to the metabolic syndrome/obesity epidemic, diabetes, hypertension, kidney disease and cardiovascular disorder. Our focus in this review is to discuss the available evidence supporting a role for uric acid in the development of metabolic syndrome, hypertension, renal disease, and cardiovascular disorder; and the potential pathophysiology mechanisms involved.


Assuntos
Doenças Cardiovasculares/sangue , Hipertensão/sangue , Nefropatias/sangue , Rim/lesões , Síndrome Metabólica/sangue , Ácido Úrico/sangue , Animais , Doenças Cardiovasculares/diagnóstico , Humanos , Síndrome Metabólica/diagnóstico
7.
Biochim Biophys Acta ; 1813(2): 346-57, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21145921

RESUMO

Decreasing the temperature to 30°C is accompanied by significant enhancement of α(2C)-AR plasma membrane levels in several cell lines with fibroblast phenotype, as demonstrated by radioligand binding in intact cells. No changes were observed on the effects of low-temperature after blocking receptor internalization in α(2C)-AR transfected HEK293T cells. In contrast, two pharmacological chaperones, dimethyl sulfoxide and glycerol, increased the cell surface receptor levels at 37°C, but not at 30°C. Further, at 37°C α(2C)-AR is co-localized with endoplasmic reticulum markers, but not with the lysosomal markers. Treatment with three distinct HSP90 inhibitors, radicicol, macbecin and 17-DMAG significantly enhanced α(2C)-AR cell surface levels at 37°C, but these inhibitors had no effect at 30°C. Similar results were obtained after decreasing the HSP90 cellular levels using specific siRNA. Co-immunoprecipitation experiments demonstrated that α(2C)-AR interacts with HSP90 and this interaction is decreased at 30°C. The contractile response to endogenous α(2C)-AR stimulation in rat tail artery was also enhanced at reduced temperature. Similar to HEK293T cells, HSP90 inhibition increased the α(2C)-AR contractile effects only at 37°C. Moreover, exposure to low-temperature of vascular smooth muscle cells from rat tail artery decreased the cellular levels of HSP90, but did not change HSP70 levels. These data demonstrate that exposure to low-temperature augments the α(2C)-AR transport to the plasma membrane by releasing the inhibitory activity of HSP90 on the receptor traffic, findings which may have clinical relevance for the diagnostic and treatment of Raynaud Phenomenon.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Receptores Adrenérgicos alfa 2/metabolismo , Animais , Artérias , Benzoquinonas/farmacologia , Membrana Celular/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Rim/citologia , Rim/metabolismo , Lactamas Macrocíclicas/farmacologia , Macrolídeos/farmacologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 2/genética , Frações Subcelulares , Temperatura
8.
Hypertension ; 79(2): 379-390, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852633

RESUMO

Nalfurafine is a G-protein-biased KOR (kappa opioid receptor) agonist that produces analgesia and lacks central nervous system adverse effects. Here, we examined the cardiovascular and renal responses to intravenous and oral nalfurafine alone and in combination with furosemide, hydrochlorothiazide, or amiloride. We hypothesized that nalfurafine, given its distinct mechanism of vasopressin inhibition, would increase urine output to these diuretics and limit electrolyte loss. Following catheterization, conscious Sprague-Dawley rats received an isotonic saline infusion and were then administered an intravenous bolus of nalfurafine, a diuretic, or a combination. Mean arterial pressure, heart rate, and urine output were recorded for 90 minutes. In another study, rats were placed in metabolic cages and administered drug in an oral volume load. Hourly urine samples were then collected for 5 hours. Intravenous and oral nalfurafine produced a marked diuresis, antinatriuresis, antikaliuresis, and a decrease in mean arterial pressure. Compared with diuretic treatment alone, intravenous coadministration with nalfurafine significantly increased urine output to furosemide and hydrochlorothiazide and decreased sodium and potassium excretion. Notably, mean arterial pressure was reduced with nalfurafine/diuretic combination therapy compared to diuretics alone. Similarly, oral coadministration of nalfurafine significantly increased urine output to hydrochlorothiazide and decreased sodium and potassium excretion, whereas combination with furosemide only limited the amount of sodium excreted. Further, both intravenous and oral coadministration of nalfurafine enhanced the diuresis to amiloride and decreased sodium excretion. Together, these findings demonstrate that nalfurafine enhances the diuresis to standard-of-care diuretics without causing an excessive loss of electrolytes, offering a new approach to treat several cardiovascular conditions.


Assuntos
Analgésicos Opioides/farmacologia , Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Morfinanos/farmacologia , Receptores Opioides kappa/agonistas , Compostos de Espiro/farmacologia , Animais , Furosemida/farmacologia , Hidroclorotiazida/farmacologia , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
9.
Br J Pharmacol ; 179(2): 287-300, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705263

RESUMO

BACKGROUND AND PURPOSE: Partial agonists of the nociceptin opioid peptide (NOP) receptor have potential therapeutic use as antihypertensive and water diuretics (aquaretics). To date, peptide NOP receptor ligands have failed to progress in clinical trials due to poor pharmacokinetics and adverse effects. Nonpeptide, small-molecule NOP receptor ligands may be more suitable as therapeutic agents. This study investigated the cardiovascular and renal responses produced by the novel nonpeptide NOP agonists AT-403, AT-090, AT-127, and AT-039. EXPERIMENTAL APPROACH: Changes in mean arterial pressure (MAP), heart rate (HR), renal excretory function and occurrence of sedation and hyperphagia were determined before and after i.v. bolus injection or infusion of the NOP agonists in conscious Sprague-Dawley rats. Additional studies involving (i) measurement of renal sympathetic nerve activity (RSNA) and (ii) renal denervation were conducted to investigate the role of the renal nerves in the cardiorenal responses to AT-039. KEY RESULTS: Bolus i.v. injection of AT-403, AT-090, AT-127 and AT-039 produced significant decreases in MAP and HR and a sodium-sparing diuresis. AT-403, AT-090, and AT-127, but not AT-039, induced sedation and hyperphagia at all doses tested. Infusion i.v. of AT-039 produced hypotension and aquaresis without adverse central nervous system effects or change in HR, responses that were also observed in renal denervated rats. CONCLUSIONS AND IMPLICATIONS: Nonpeptide NOP agonists decrease blood pressure and produce aquaresis in conscious rodents. Due to lack of sedation and hyperphagia, AT-039 represents a novel NOP agonist that may be useful for treatment of hypertension and/or volume overload/hyponatraemic states.


Assuntos
Analgésicos Opioides , Receptores Opioides , Analgésicos Opioides/farmacologia , Animais , Hiperfagia , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Ligantes , Ratos , Ratos Sprague-Dawley , Receptores Opioides/agonistas , Receptor de Nociceptina
10.
J Pharmacol Exp Ther ; 337(1): 247-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21233196

RESUMO

Strychnine-sensitive glycine receptors and glycine-immunoreactive fibers are expressed in the hypothalamic paraventricular nucleus (PVN), yet the functional significance of this innervation is unclear. Therefore, these studies examined the changes in cardiovascular and renal function and renal sympathetic nerve activity (RSNA) produced by the microinjection of glycine (5 and 50 nmol) into the PVN of conscious Sprague-Dawley rats. Microinjection of glycine into, but not outside of, the PVN dose-dependently increased urine flow rate and urinary sodium excretion and decreased RSNA. At the higher dose, PVN glycine also decreased heart rate; neither 5 nor 50 nmol PVN glycine altered mean arterial pressure. The glycine (50 nmol)-evoked diuresis and natriuresis were abolished in rats continuously infused intravenously with [Arg(8)]-vasopressin. Furthermore, chronic bilateral renal denervation prevented the bradycardia and diuresis to PVN glycine and blunted the natriuresis. In other studies, unilateral PVN pretreatment with the glycine receptor antagonist strychnine (1.6 nmol) prevented the effects of PVN glycine (50 nmol) on heart rate, RSNA, and renal excretory function. When microinjected bilaterally, PVN strychnine (1.6 nmol per site) evoked a significant increase in heart rate and RSNA without altering renal excretory function. These findings demonstrate that in conscious rats glycine acts in the PVN to enhance the renal excretion of water and sodium and decrease central sympathetic outflow to the heart and kidneys. Although endogenous PVN glycine inputs elicit a tonic control of heart rate and RSNA, the renal excretory responses to PVN glycine seem to be caused primarily by the inhibition of arginine vasopressin secretion.


Assuntos
Diurese/fisiologia , Glicina/administração & dosagem , Frequência Cardíaca/fisiologia , Natriurese/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Fibras Simpáticas Pós-Ganglionares/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Diurese/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Infusões Intraventriculares , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Microinjeções/métodos , Natriurese/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos
11.
Pharmacol Biochem Behav ; 207: 173218, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34118232

RESUMO

The adverse effects of mu opioid agonists have spurred a renewed interest in using kappa opioid receptor (KOR) agonists as analgesics. KOR agonists also have potential for development as diuretics for the treatment of edema and hypertension. Here, we evaluated the discriminative stimulus, antinociceptive, and diuretic effects of the kappa agonist (±)-trans-U-50488 and its stereoisomers (-)-(1S,2S)-U-50488 or (+)-(1R,2R)-U-50488) alone and in combination with the cannabinoid agonist (-)-CP 55,940. To establish (±)-U-50488 as a discriminative stimulus, rats (n = 12) were trained to discriminate intraperitoneal (i.p.) administration of 5.6 mg/kg of (±)-trans-U-50488 from saline under a fixed-ratio 20 (FR-20) schedule of food reinforcement. Then, antinociception was assessed using two procedures: warm water tail withdrawal and von Frey paw withdrawal. Diuretic effects were assessed in separate rats (n = 6/group). Doses of (±)-U-50488 and (-)-U-50488 that served as discriminative stimuli produced significant increases in urine output, but at lower doses than those that produced antinociception. In contrast, (+)-U-50488 alone had no discriminative stimulus or diuretic effects at the doses tested, but did produce antinociception in the von Frey assay. When three cannabinoids and morphine were tested in the (±)-U-50488 discrimination procedure to determine the similarity of these drugs' discriminative stimulus effects to those for (±)-U-50488, the rank order similarity was (-)-CP 55,940 > (-)-trans-THC > (+)-WIN 55,212-2 ≥ morphine. (-)-CP 55,940 alone (0.056 mg/kg) partially substituted for the discriminative stimulus effects of (±)-U-50488 and produced significant diuretic and antinociceptive effects. (-)-CP 55,940 in combination with (±)-U-50488 also produced a two-fold leftward shift in the discriminative stimulus curve for (±)-U-50488, and near-additive antinociception with (±)-U-50488 and (+)-U-50488. Further, the diuretic effect of (-)-CP 55,940 was enhanced by a dose of (+)-U50488, which itself did not alter urine output. These data together indicate that a combination of cannabinoid and kappa opioid agonists can enhance diuresis, but may have limited potential for serving as opioid-sparing pharmacotherapeutics for treatment of pain.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/metabolismo , Cicloexanóis/farmacologia , Receptores Opioides kappa/agonistas , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/química , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Benzoxazinas/farmacologia , Diuréticos/farmacologia , Relação Dose-Resposta a Droga , Masculino , Morfina/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Ratos , Ratos Long-Evans , Reforço Psicológico , Estereoisomerismo
12.
Am J Hypertens ; 33(2): 198-204, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-31677381

RESUMO

BACKGROUND: Angiotensin II (Ang II) activates central Angiotensin II type 1 receptors to increase blood pressure via multiple pathways. However, whether central Gα proteins contribute to Ang II-induced hypertension remains unknown. We hypothesized that Angiotensin II type 1 receptors couple with Gα12 and/or Gαq to produce sympatho-excitation and increase blood pressure and downregulation of these Gα-subunit proteins will attenuate Ang II-dependent hypertension. METHODS AND RESULTS: After chronic infusion of Ang II (s.c. 350 ng/kg/min) or vehicle for 2 weeks, Ang II evoked an increase in Gα12 expression, but not Gαq in the rostral ventrolateral medulla of Sprague-Dawley rats. In other studies, rats that received Ang II or vehicle infusion s.c. were simultaneously infused i.c.v. with a scrambled (SCR) or Gα12 oligodeoxynucleotide (ODN; 50 µg/day). Central Gα12 ODN infusion lowered mean blood pressure in Ang II infused rats compared with SCR ODN infusion (14-day peak; 133 ± 12 vs. 176 ± 11 mm Hg). Compared to the SCR ODN group, Ang II infused rats that received i.c.v. Gα12 ODN showed a greater increase in heart rate to atropine, an attenuated reduction in blood pressure to chlorisondamine, and an improved baroreflex sensitivity. In addition, central Gα12 and Gαq ODN pretreatment blunted the pressor response to an acute i.c.v. injection of Ang II (i.c.v., 200 ng). CONCLUSIONS: These findings suggest that central Gα12 protein signaling pathways play an important role in the development of chronic Ang II-dependent hypertension in rats.


Assuntos
Angiotensina II , Pressão Sanguínea , Encéfalo/enzimologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/prevenção & controle , Animais , Modelos Animais de Doenças , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Hipertensão/induzido quimicamente , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Masculino , Oligodesoxirribonucleotídeos/administração & dosagem , Ratos Sprague-Dawley , Transdução de Sinais
13.
Hypertension ; 75(4): 1002-1011, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32148128

RESUMO

We have previously reported that in salt-resistant rat phenotypes brain, Gαi2 (guanine nucleotide-binding protein alpha inhibiting activity polypeptide 2) proteins are required to maintain blood pressure and sodium balance. However, the impact of hypothalamic paraventricular nucleus (PVN) Gαi2 proteins on the salt sensitivity of blood pressure is unknown. Here, by the bilateral PVN administration of a targeted Gαi2 oligodeoxynucleotide, we show that PVN-specific Gαi2 proteins are required to facilitate the full natriuretic response to an acute volume expansion (peak natriuresis [µeq/min] scrambled (SCR) oligodeoxynucleotide 41±3 versus Gαi2 oligodeoxynucleotide 18±4; P<0.05) via a renal nerve-dependent mechanism. Furthermore, in response to chronically elevated dietary sodium intake, PVN-specific Gαi2 proteins are essential to counter renal nerve-dependent salt-sensitive hypertension (mean arterial pressure [mm Hg] 8% NaCl; SCR oligodeoxynucleotide 128±2 versus Gαi2 oligodeoxynucleotide 147±3; P<0.05). This protective pathway involves activation of PVN Gαi2 signaling pathways, which mediate sympathoinhibition to the blood vessels and kidneys (renal norepinephrine [pg/mg] 8% NaCl; SCR oligodeoxynucleotide 375±39 versus Gαi2 oligodeoxynucleotide 850±27; P<0.05) and suppression of the activity of the sodium chloride cotransporter assessed as peak natriuresis to hydrochlorothiazide. Additionally, central oligodeoxynucleotide-mediated Gαi2 protein downregulation prevented PVN parvocellular neuron activation, assessed by FosB immunohistochemistry, in response to increased dietary salt intake. In our analysis of the UK BioBank data set, it was observed that 2 GNAI2 single nucleotide polymorphism (SNP) (rs2298952, P=0.041; rs4547694, P=0.017) significantly correlate with essential hypertension. Collectively, our data suggest that selective targeting and activation of PVN Gαi2 proteins is a novel therapeutic approach for the treatment of salt-sensitive hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Natriurese/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Cloreto de Sódio na Dieta , Animais , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
14.
BMC Pharmacol Toxicol ; 20(1): 73, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791399

RESUMO

BACKGROUND: Timolol Maleate is a non-selective beta-adrenergic blocker that is commonly used to treat open-angle glaucoma. Despite its topical administration, ophthalmic timolol enters systemic circulation and produces a systemic beta-adrenergic blockade. We report a case of long-term timolol use that uncovered and worsened an underlying cardiac conduction defect demonstrated as a third degree atrioventricular (AV) block. CASE PRESENTATION: A 62-year old male with a 13-year history of glaucoma was hospitalized due to shortness of breath, dizziness, and amaurosis. Electrocardiography indicated a heart rate (HR) of 29 bpm with complete atrioventricular (AV) block, and the HR was significantly increased with the treatment of isoprenaline. However, the patient experienced bradycardic episodes (- 20 Δbpm) immediately after self-administration of timolol eye drops. The AV block and bradycardia resolved 48-h after timolol cessation. The man was discharged 1 week later with an asymptomatic first-degree A-V block. However, he presented with a worsened A-V block at his one-year checkup. CONCLUSION: We conclude that chronic topical timolol administration may aggravate a cardiac conduction defect leading to an AV block that is only temporarily resolved by timolol cessation. Patients taking timolol should be routinely monitored for cardiovascular aberrations and if any detected, immediately discontinue timolol therapy. Individuals experiencing timolol induced cardiovascular side effects should receive long term follow-up even if symptoms resolve, as they may be indicative of an underlying conduction defect.


Assuntos
Bloqueio Atrioventricular/induzido quimicamente , Glaucoma/tratamento farmacológico , Timolol/efeitos adversos , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/tratamento farmacológico , Eletrocardiografia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Soluções Oftálmicas , Timolol/administração & dosagem , Timolol/uso terapêutico , Resultado do Tratamento
15.
J Pharmacol Exp Ther ; 326(3): 897-904, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18539652

RESUMO

Intracerebroventricular administration of the opioid-like peptide nociceptin/orphanin FQ (N/OFQ) produces bradycardia, hypotension, and diuresis in mice. We hypothesized that these responses are solely caused by selective activation of central N/OFQ peptide (NOP) receptors. To test this premise, we first examined whether i.c.v. N/OFQ produced dose-dependent diuretic and cardiovascular depressor responses in commercially available C57BL/6 mice. Next, using doses established in these studies, we examined the renal excretory and cardiovascular responses to i.c.v. N/OFQ in conscious transgenic NOP receptor knockout mice (NOP(-/-)). In metabolic studies, i.c.v. N/OFQ, but not saline vehicle, dose-dependently increased urine output (V) in NOP(+/+); this response was significant at 3 nmol (N/OFQ, V = 0.39 +/- 0.10 ml/2 h; saline, 0.08 +/- 0.05 ml/2 h). The N/OFQ-evoked diuresis was absent in littermate NOP(-/-) (N/OFQ, V = 0.06 +/- 0.06 ml/2 h; saline, 0.03 +/- 0.03 ml/2 h). There were no significant changes in urinary sodium or potassium excretion or free water clearance in either group. In telemetry studies, i.c.v. N/OFQ dose dependently lowered heart rate (HR) and mean arterial pressure (MAP). At 3 nmol N/OFQ, both HR and MAP were reduced in NOP(+/+) (peak DeltaHR = -217 +/- 31 bpm; peak DeltaMAP =-47 +/- 7 mm Hg) compared with saline (peak DeltaHR =-14 +/- 5 bpm; peak DeltaMAP = 2 +/- 3 mm Hg). These N/OFQ-evoked bradycardic and hypotensive responses were absent in NOP(-/-) (peak DeltaHR =-13 +/- 17 bpm; peak DeltaMAP =-2 +/- 4 mm Hg, respectively). Basal 24-h cardiovascular and renal excretory function were not different between NOP(-/-) and NOP(+/+) mice. These results establish that the bradycardia, hypotension and diuresis produced by centrally administered N/OFQ are mediated by selective activation of NOP receptors.


Assuntos
Bradicardia/metabolismo , Diurese/fisiologia , Hipotensão/metabolismo , Peptídeos Opioides/administração & dosagem , Peptídeos Opioides/deficiência , Receptores Opioides/metabolismo , Animais , Bradicardia/induzido quimicamente , Diurese/efeitos dos fármacos , Hipotensão/induzido quimicamente , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peptídeos Opioides/genética , Receptores Opioides/agonistas , Nociceptina
16.
Eur J Heart Fail ; 10(7): 625-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18550427

RESUMO

OBJECTIVE: To investigate evidence for the interplay between cytokines, angiotensin II and nNOS in the paraventricular nucleus (PVN), for regulating sympathetic outflow in a rat model of CHF. METHODS AND RESULTS: Heart failure was induced in Sprague-Dawley rats by coronary artery ligation. One group of rats was treated with pentoxifylline (PTX, 30 mg/kg IP), a cytokine blocker, or vehicle, for 5 weeks. Another group of rats was pre-treated with PTX before coronary ligation to study prior cytokine blocking effect on survival. Both groups were combined in the analysis. Echocardiography demonstrated an increase in LV end-diastolic pressure and Tei index after 5 weeks in CHF rats. ELISA revealed a significant increase in plasma TNF-alpha and IL-1beta in CHF rats. Inducible NOS (iNOS) and angiotensin receptor-type 1 (AT-1R) mRNA expressions were increased, while neuronal NOS (nNOS) was decreased in the PVN of CHF rats; these changes were reversed by PTX. PTX treatment also decreased plasma norepinephrine and epinephrine levels and improved baroreflex control of renal sympathoexcitation in CHF rats. Immunohistochemistry revealed elevated 3-nitrotyrosine formation in the heart and the PVN of CHF rats, but not in PTX treated rats. CONCLUSION: PTX decreased both peripheral and central cytokine expression, alleviated nitric oxide dysregulation, and inhibited the formation of peroxynitrite in the PVN resulting in decreased sympathoexcitation in CHF rats.


Assuntos
Citocinas/metabolismo , Insuficiência Cardíaca/fisiopatologia , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Pentoxifilina/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Análise de Variância , Animais , Western Blotting , Ecocardiografia , Ensaio de Imunoadsorção Enzimática , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Técnicas Imunoenzimáticas , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sistema Nervoso Simpático/efeitos dos fármacos
17.
J Am Coll Cardiol ; 72(21): 2609-2621, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30466519

RESUMO

BACKGROUND: Previously, we have shown that radiofrequency (RF) renal denervation (RDN) reduces myocardial infarct size in a rat model of acute myocardial infarction (MI) and improves left ventricular (LV) function and vascular reactivity in the setting of heart failure following MI. OBJECTIVES: The authors investigated the therapeutic efficacy of RF-RDN in a clinically relevant normotensive swine model of heart failure with reduced ejection fraction (HFrEF). METHODS: Yucatan miniswine underwent 75 min of left anterior descending coronary artery balloon occlusion to induce MI followed by reperfusion (R) for 18 weeks. Cardiac function was assessed pre- and post-MI/R by transthoracic echocardiography and every 3 weeks for 18 weeks. HFrEF was classified by an LV ejection fraction <40%. Animals who met inclusion criteria were randomized to receive bilateral RF-RDN (n = 10) treatment or sham-RDN (n = 11) at 6 weeks post-MI/R using an RF-RDN catheter. RESULTS: RF-RDN therapy resulted in significant reductions in renal norepinephrine content and circulating angiotensin I and II. RF-RDN significantly increased circulating B-type natriuretic peptide levels. Following RF-RDN, LV end-systolic volume was significantly reduced when compared with sham-treated animals, leading to a marked and sustained improvement in LV ejection fraction. Furthermore, RF-RDN improved LV longitudinal strain. Simultaneously, RF-RDN reduced LV fibrosis and improved coronary artery responses to vasodilators. CONCLUSIONS: RF-RDN provides a novel therapeutic strategy to reduce renal sympathetic activity, inhibit the renin-angiotensin system, increase circulating B-type natriuretic peptide levels, attenuate LV fibrosis, and improve left ventricular performance and coronary vascular function. These cardioprotective mechanisms synergize to halt the progression of HFrEF following MI/R in a clinically relevant model system.


Assuntos
Denervação Autônoma/métodos , Progressão da Doença , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/prevenção & controle , Rim/inervação , Sistema Renina-Angiotensina/fisiologia , Animais , Relação Dose-Resposta a Droga , Ecocardiografia/métodos , Feminino , Insuficiência Cardíaca/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Rim/cirurgia , Artéria Renal/diagnóstico por imagem , Artéria Renal/inervação , Artéria Renal/metabolismo , Artéria Renal/cirurgia , Sistema Renina-Angiotensina/efeitos dos fármacos , Suínos , Porco Miniatura , Vasodilatadores/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
18.
Peptides ; 28(6): 1240-51, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17532097

RESUMO

[(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) has been designed as a novel ligand for the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) by combining into the same peptide different chemical modifications reported to increase N/OFQ potency. In vitro data obtained in the electrically stimulated mouse vas deferens demonstrated that UFP-112 behaved as a high potency (pEC(50) 9.43) full agonist at the NOP receptor. UFP-112 effects were sensitive to the NOP antagonist UFP-101 but not to naloxone and no longer evident in tissues taken from NOP(-/-) mice. In vitro half life of UFP-112 in mouse plasma and brain homogenate was 2.6- and 3.5-fold higher than that of N/OFQ. In vivo, in the mouse tail withdrawal assay, UFP-112 (1-100pmol, i.c.v.) mimicked the actions of N/OFQ producing pronociceptive effects after i.c.v. administration and antinociceptive effects when given i.t.; in both cases, UFP-112 was approximately 100-fold more potent than the natural peptide and produced longer lasting effects. UFP-112 also mimicked the hyperphagic effect of N/OFQ producing a bell shaped dose response curve with the maximum reached at 10pmol. The hyperphagic effects of N/OFQ and UFP-112 were absent in NOP(-/-) mice. Equi-effective high doses of UFP-112 (0.1nmol) and N/OFQ (10nmol) were injected i.c.v. in mice and spontaneous locomotor activity recorded for 16h. N/OFQ produced a clear inhibitory effect which lasted for 60min while UFP-112 elicited longer lasting effects (>6h). In conscious rats, UFP-112 (0.1 and 10nmol/kg, i.v.) produced a marked and sustained decrease in heart rate, blood pressure, and urinary sodium excretion and a profound increase in urine flow. Collectively, these findings demonstrate that UFP-112 behaves in vitro and in vivo as a highly potent and selective ligand able to produce full and long lasting activation of NOP receptors.


Assuntos
Peptídeos Opioides/farmacologia , Receptores Opioides/agonistas , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Estimulação Elétrica , Eletrofisiologia , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Peptídeos Opioides/sangue , Peptídeos Opioides/urina , Ratos , Ratos Sprague-Dawley , Receptores Opioides/efeitos dos fármacos , Sódio/urina , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia , Receptor de Nociceptina
19.
J Am Coll Cardiol ; 70(17): 2139-2153, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29050562

RESUMO

BACKGROUND: Sustained sympathetic activation contributes to the progression of myocardial cell injury, cardiac fibrosis, and left ventricular (LV) dysfunction in heart failure (HF). OBJECTIVES: This study investigated the effects of radiofrequency renal nerve denervation (RF-RDN) on the pathobiology of HF and the interaction between the renal sympathetic nerves and natriuretic peptide (NP) metabolism. METHODS: Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to 45 min of coronary artery ligation and reperfusion for 12 weeks. At 4 weeks post-reperfusion, SHR and WKY underwent either bilateral RF-RDN or sham-RDN. RESULTS: Following RF-RDN in both strains, LV ejection fraction remained significantly above those levels in respective sham-RDN rats, and at the end of the 12-week study, rats in both strains had significantly reduced LV fibrosis and improved vascular function. RF-RDN therapy significantly improved vascular reactivity to endothelium-dependent and -independent vasodilators as well as vascular compliance in the setting of severe HF. Improvements in LV function were accompanied by significant elevations in circulating NP as compared to those associated with sham-RDN. Further investigation into the cause of increased circulating NP levels demonstrated that RF-RDN significantly inhibited renal neprilysin activity in SHR and WKY with HF. Likewise, chronic treatment with the beta1 antagonist bisoprolol inhibited renal neprilysin activity and increased circulation NP levels in WKY with HF. CONCLUSIONS: This study identifies a novel endogenous pathway by which the renal nerves participate in the degradation of cardioprotective NP. Furthermore, removal of the influence of the renal nerves on kidney function attenuates renal neprilysin activity, augments circulating NP levels, reduces myocardial fibrosis, and improves LV function in the setting of HF.


Assuntos
Insuficiência Cardíaca/terapia , Rim/inervação , Neprilisina/antagonistas & inibidores , Simpatectomia , Aminobutiratos/farmacologia , Angiotensina II/sangue , Animais , Compostos de Bifenilo , Bisoprolol/farmacologia , Pressão Sanguínea , Combinação de Medicamentos , Ecocardiografia , Miocárdio/química , Miocárdio/patologia , Neprilisina/fisiologia , Nitritos/análise , Norepinefrina/sangue , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Artéria Renal/inervação , Renina/sangue , Traumatismo por Reperfusão/fisiopatologia , Tetrazóis/farmacologia , Valsartana , Função Ventricular Esquerda/fisiologia
20.
Am J Hypertens ; 29(12): 1394-1401, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27538721

RESUMO

BACKGROUND: Radiofrequency ablation of the renal arteries (RF-ABL) has been shown to decrease blood pressure (BP) in drug-resistant hypertensive patients who receive antihypertensive drug therapy. However, there remain questions regarding how RF-ABL influences BP independent of drug therapy and whether complete renal denervation is necessary to maximally lower BP. To study these questions, we examined the cardiovascular, sympathetic, and renal effects produced by RF-ABL of the proximal renal arteries in spontaneously hypertensive rats (SHR) with established hypertension. METHODS: SHR were instrumented (telemetry) for measurement of systolic/diastolic BP (SBP/DBP). Rats then underwent Sham-ABL or RF-ABL adjacent to the renal ostium and BP was recorded for 8 weeks. Changes in sympathetic activity, 24-hour water/sodium excretion, and levels of urinary angiotensinogen (AGT), plasma renin activity, and kidney renin content (KRC) were measured in SHR. RESULTS: Compared with Sham-ABL, RF-ABL produced a sustained decrease in BP. At 8 weeks, SBP/DBP was 171±6/115±3 and 183±4/129±3mm Hg for RF-ABL and Sham-ABL SHR, respectively. Correlating with the reduction in BP, RF-ABL significantly decreased the low frequency/total and low frequency/high frequency of BP variability and attenuated the hypotensive response to chlorisondamine. Kidney norepinephrine levels were markedly decreased at 8 weeks in RF-ABL vs. Sham-ABL SHR. There were no group differences in 24-hour sodium/water excretion or urinary AGT excretion rate (6 weeks) or plasma renin activity or KRC (8 weeks). In other studies, concurrent RF-ABL plus surgical denervation initially decreased BP to a greater level than RF-ABL alone, but thereafter the reduction in BP between groups was not different. CONCLUSIONS: In hypertensive SHR, bilateral RF-ABL of the proximal renal arteries produced a sustained decease in sympathetic activity and BP without changes in sodium/water excretion or activity of the systemic/renal renin-angiotensin system.


Assuntos
Ablação por Cateter , Hipertensão/cirurgia , Rim/irrigação sanguínea , Inibição Neural , Artéria Renal/inervação , Simpatectomia/métodos , Sistema Nervoso Simpático/cirurgia , Angiotensinogênio/urina , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Natriurese , Norepinefrina/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Renina/sangue , Sistema Renina-Angiotensina , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Micção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA