RESUMO
The indigenous inhabitants of Siberia live in some of the harshest environments on earth, experiencing extended periods of severe cold temperatures, dramatic variation in photoperiod, and limited and highly variable food resources. While the successful long-term settlement of this area by humans required multiple behavioral and cultural innovations, the nature of the underlying genetic changes has generally remained elusive. In this study, we used a three-part approach to identify putative targets of positive natural selection in Siberians. We first performed selection scans on whole exome and genome-wide single nucleotide polymorphism array data from multiple Siberian populations. We then annotated candidates in the tails of the empirical distributions, focusing on candidates with evidence linking them to biological processes and phenotypes previously identified as relevant to adaptation in circumpolar groups. The top candidates were then genotyped in additional populations to determine their spatial allele frequency distributions and associations with climate variables. Our analysis reveals missense mutations in three genes involved in lipid metabolism (PLA2G2A, PLIN1, and ANGPTL8) that exhibit genomic and spatial patterns consistent with selection for cold climate and/or diet. These variants are unified by their connection to brown adipose tissue and may help to explain previously observed physiological differences in Siberians such as low serum lipid levels and increased basal metabolic rate. These results support the hypothesis that indigenous Siberians have genetically adapted to their local environment by selection on multiple genes.
Assuntos
Adaptação Biológica , Evolução Molecular , Genoma Humano , Seleção Genética , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Clima , Dieta , Frequência do Gene , Fosfolipases A2 do Grupo II/genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Mutação de Sentido Incorreto , Hormônios Peptídicos/genética , Perilipina-1/genética , Polimorfismo de Nucleotídeo Único , SibériaRESUMO
Siberia is one of the coldest environments on Earth and has great seasonal temperature variation. Long-term settlement in northern Siberia undoubtedly required biological adaptation to severe cold stress, dramatic variation in photoperiod, and limited food resources. In addition, recent archeological studies show that humans first occupied Siberia at least 45,000 years ago; yet our understanding of the demographic history of modern indigenous Siberians remains incomplete. In this study, we use whole-exome sequencing data from the Nganasans and Yakuts to infer the evolutionary history of these two indigenous Siberian populations. Recognizing the complexity of the adaptive process, we designed a model-based test to systematically search for signatures of polygenic selection. Our approach accounts for stochasticity in the demographic process and the hitchhiking effect of classic selective sweeps, as well as potential biases resulting from recombination rate and mutation rate heterogeneity. Our demographic inference shows that the Nganasans and Yakuts diverged â¼12,000-13,000 years ago from East-Asian ancestors in a process involving continuous gene flow. Our polygenic selection scan identifies seven candidate gene sets with Siberian-specific signals. Three of these gene sets are related to diet, especially to fat metabolism, consistent with the hypothesis of adaptation to a fat-rich animal diet. Additional testing rejects the effect of hitchhiking and favors a model in which selection yields small allele frequency changes at multiple unlinked genes.
Assuntos
Aclimatação/genética , Adaptação Biológica/genética , Alelos , Povo Asiático/genética , Evolução Biológica , DNA Mitocondrial/genética , Demografia/métodos , Dieta , Gorduras na Dieta , Etnicidade/genética , Exoma/genética , Fluxo Gênico/genética , Frequência do Gene/genética , Variação Genética/genética , Genética Populacional/métodos , Humanos , Herança Multifatorial/genética , Filogenia , Sibéria , Sequenciamento do Exoma/métodosRESUMO
Indonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups.
Assuntos
Povo Asiático/genética , Variação Genética/genética , Genoma Humano/genética , Ásia/etnologia , Sudeste Asiático/etnologia , DNA Mitocondrial/genética , Evolução Molecular , Ásia Oriental , Genética Populacional/métodos , Haplótipos , Migração Humana , Humanos , Indonésia/etnologia , Ilhas , Oceania/etnologiaRESUMO
OBJECTIVES: We examined autosomal genome-wide SNPs and Y-chromosome data from 15 Siberian and 12 reference populations to study the affinities of Siberian populations, and to address hypotheses about the origin of the Samoyed peoples. METHODS: Samples were genotyped for 567 096 autosomal SNPs and 147 Y-chromosome polymorphic sites. For several analyses, we used 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples. To examine genetic relatedness among populations, we applied PCA, FST , TreeMix, and ADMIXTURE analyses. To explore the potential effect of demography and evolutionary processes, the distribution of ROH and IBD sharing within population were studied. RESULTS: Analyses of autosomal and Y-chromosome data reveal high differentiation of the Siberian groups. The Siberian populations have a large proportion of their genome in ROH and IBD segments. Several populations (ie, Nganasans, Evenks, Yukagirs, and Koryaks) do not appear to have experienced admixture with other Siberian populations (ie, producing only positive f3), while for the other tested populations the composition of mixing sources always included Nganasans or Evenks. The Nganasans from the Taymyr Peninsula demonstrate the greatest level of shared shorter ROH and IBD with nearly all other Siberian populations. CONCLUSIONS: Autosomal SNP and Y-chromosome data demonstrate that Samoyedic populations differ significantly in their genetic composition. Genetic relationship is observed only between Forest and Tundra Nentsi. Selkups are affiliated with the Kets from the Yenisey River, while the Nganasans are separated from their linguistic neighbors, showing closer affinities with the Evenks and Yukagirs.
Assuntos
Variação Genética , Linguística , Polimorfismo de Nucleotídeo Único , Cromossomos Humanos Y/genética , DNA Antigo/análise , Migração Humana , Humanos , SibériaRESUMO
At least since the Neolithic, humans have largely lived in networks of small, traditional communities. Often socially isolated, these groups evolved distinct languages and cultures over microgeographic scales of just tens of kilometers. Population genetic theory tells us that genetic drift should act quickly in such isolated groups, thus raising the question: do networks of small human communities maintain levels of genetic diversity over microgeographic scales? This question can no longer be asked in most parts of the world, which have been heavily impacted by historical events that make traditional society structures the exception. However, such studies remain possible in parts of Island Southeast Asia and Oceania, where traditional ways of life are still practiced. We captured genome-wide genetic data, together with linguistic records, for a case-study system-eight villages distributed across Sumba, a small, remote island in eastern Indonesia. More than 4,000 years after these communities were established during the Neolithic period, most speak different languages and can be distinguished genetically. Yet their nuclear diversity is not reduced, instead being comparable to other, even much larger, regional groups. Modeling reveals a separation of time scales: while languages and culture can evolve quickly, creating social barriers, sporadic migration averaged over many generations is sufficient to keep villages linked genetically. This loosely-connected network structure, once the global norm and still extant on Sumba today, provides a living proxy to explore fine-scale genome dynamics in the sort of small traditional communities within which the most recent episodes of human evolution occurred.
Assuntos
Etnicidade/genética , Variação Genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Sudeste Asiático , Evolução Biológica , Estudos de Associação Genética , Genética Populacional , Genômica , Geografia , Humanos , Indonésia , Idioma , Linguística , Polimorfismo de Nucleotídeo Único , Dinâmica PopulacionalRESUMO
Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity.
Assuntos
Variação Genética , Casamento , Cultura , Feminino , Humanos , Masculino , Modelos GenéticosRESUMO
We report the discovery of an African American Y chromosome that carries the ancestral state of all SNPs that defined the basal portion of the Y chromosome phylogenetic tree. We sequenced â¼240 kb of this chromosome to identify private, derived mutations on this lineage, which we named A00. We then estimated the time to the most recent common ancestor (TMRCA) for the Y tree as 338 thousand years ago (kya) (95% confidence interval = 237-581 kya). Remarkably, this exceeds current estimates of the mtDNA TMRCA, as well as those of the age of the oldest anatomically modern human fossils. The extremely ancient age combined with the rarity of the A00 lineage, which we also find at very low frequency in central Africa, point to the importance of considering more complex models for the origin of Y chromosome diversity. These models include ancient population structure and the possibility of archaic introgression of Y chromosomes into anatomically modern humans. The A00 lineage was discovered in a large database of consumer samples of African Americans and has not been identified in traditional hunter-gatherer populations from sub-Saharan Africa. This underscores how the stochastic nature of the genealogical process can affect inference from a single locus and warrants caution during the interpretation of the geographic location of divergent branches of the Y chromosome phylogenetic tree for the elucidation of human origins.
Assuntos
Negro ou Afro-Americano/genética , Cromossomos Humanos Y , DNA Mitocondrial/genética , África Subsaariana , África Central , Linhagem da Célula , Feminino , Fósseis , Genética Populacional/métodos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
As a result of the combination of great linguistic and cultural diversity, the highland populations of Daghestan present an excellent opportunity to test the hypothesis of language-gene coevolution at a fine geographic scale. However, previous genetic studies generally have been restricted to uniparental markers and have not included many of the key populations of the region. To improve our understanding of the genetic structure of Daghestani populations and to investigate possible correlations between genetic and linguistic variation, we analyzed ~550,000 autosomal single nucleotide polymorphisms, phylogenetically informative Y chromosome markers and mtDNA haplotypes in 21 ethnic Daghestani groups. We found high levels of population structure in Daghestan consistent with the hypothesis of long-term isolation among populations of the highland Caucasus. Highland Daghestani populations exhibit extremely high levels of between-population diversity for all genetic systems tested, leading to some of the highest FST values observed for any region of the world. In addition, we find a significant positive correlation between gene and language diversity, suggesting that these two aspects of human diversity have coevolved as a result of historical patterns of social interaction among highland farmers at the community level. Finally, our data are consistent with the hypothesis that most Daghestanian-speaking groups descend from a common ancestral population (~6000-6500 years ago) that spread to the Caucasus by demic diffusion followed by population fragmentation and low levels of gene flow.
Assuntos
Evolução Molecular , Genética Populacional , Linguística , Cromossomos Humanos Y , DNA Mitocondrial/genética , Daguestão , Marcadores Genéticos , Haplótipos , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Componente PrincipalRESUMO
The sacred texts of five world religions (Buddhism, Christianity, Hinduism, Islam, and Judaism) use similar belief systems to set limits on sexual behavior. We propose that this similarity is a shared cultural solution to a biological problem: namely male uncertainty over the paternity of offspring. Furthermore, we propose the hypothesis that religious practices that more strongly regulate female sexuality should be more successful at promoting paternity certainty. Using genetic data on 1,706 father-son pairs, we tested this hypothesis in a traditional African population in which multiple religions (Islam, Christianity, and indigenous) coexist in the same families and villages. We show that the indigenous religion enables males to achieve a significantly (P = 0.019) lower probability of cuckoldry (1.3% versus 2.9%) by enforcing the honest signaling of menstruation, but that all three religions share tenets aimed at the avoidance of extrapair copulation. Our findings provide evidence for high paternity certainty in a traditional African population, and they shed light on the reproductive agendas that underlie religious patriarchy.
Assuntos
Paternidade , Religião , Comportamento Sexual , Feminino , Humanos , Masculino , LinhagemRESUMO
Timor, an eastern Indonesian island linking mainland Asia with Australia and the Pacific world, had a complex history, including its role as a contact zone between two language families (Austronesian and Trans-New Guinean), as well as preserving elements of a rich Austronesian cultural heritage, such as matrilocal marriage practices. Using an array of biparental (autosomal and X-chromosome single-nucleotide polymorphisms) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstruct a broad genetic profile of Timorese in the Belu regency of West Timor, including the traditional princedom of Wehali, focusing on the effects of cultural practices, such as language and social change, on patterns of genetic diversity. Sex-linked data highlight the different histories and social pressures experienced by women and men. Measures of diversity and population structure show that Timorese men had greater local mobility than women, as expected in matrilocal communities, where women remain in their natal village, whereas men move to the home village of their wife. Reaching further back in time, maternal loci (mitochondrial DNA and the X chromosome) are dominated by lineages with immigrant Asian origins, whereas paternal loci (Y chromosome) tend to exhibit lineages of the earliest settlers in the eastern Indonesian region. The dominance of Asian female lineages is especially apparent in the X chromosome compared with the autosomes, suggesting that women played a paramount role during and after the period of Asian immigration into Timor, perhaps driven by the matrilocal marriage practices of expanding Austronesian communities.
Assuntos
DNA Mitocondrial/genética , Variação Genética , Genética Populacional/tendências , Comportamento Social , Análise de Variância , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Diversidade Cultural , Feminino , Frequência do Gene , Genética Populacional/métodos , Geografia , Haplótipos , Humanos , Indonésia , Idioma , Masculino , Dados de Sequência Molecular , Crescimento Demográfico , Análise de Sequência de DNA , Isolamento SocialRESUMO
Indonesia, an island nation linking mainland Asia with the Pacific world, hosts a wide range of linguistic, ethnic and genetic diversity. Despite the complexity of this cultural environment, genetic studies in Indonesia remain surprisingly sparse. Here, we report mitochondrial DNA (mtDNA) and associated Y-chromosome diversity for the largest cohort of Indonesians examined to date-2740 individuals from 70 communities spanning 12 islands across the breadth of the Indonesian archipelago. We reconstruct 50 000 years of population movements, from mitochondrial lineages reflecting the very earliest settlers in island southeast Asia, to Neolithic population dispersals. Historic contacts from Chinese, Indians, Arabs and Europeans comprise a noticeable fraction of Y-chromosome variation, but are not reflected in the maternally inherited mtDNA. While this historic immigration favored men, patterns of genetic diversity show that women moved more widely in earlier times. However, measures of population differentiation signal that Indonesian communities are trending away from the matri- or ambilocality of early Austronesian societies toward the more common practice of patrilocal residence today. Such sex-specific dispersal patterns remain even after correcting for the different mutation rates of mtDNA and the Y chromosome. This detailed palimpsest of Indonesian genetic diversity is a direct outcome of the region's complex history of immigration, transitory migrants and populations that have endured in situ since the region's first settlement.
Assuntos
DNA Mitocondrial/genética , Variação Genética , Genética Populacional/métodos , Cromossomos Humanos Y/genética , Emigração e Imigração , Etnicidade/genética , Feminino , Haplótipos , Humanos , Indonésia , Masculino , Mitocôndrias/genética , Ilhas do Pacífico , Filogenia , Dinâmica Populacional , Análise de Sequência de DNARESUMO
PURPOSE: The management of epilepsy in children is particularly challenging when seizures are resistant to antiepileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiologic diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurologic disorders, especially those associated with abnormal brain development. Herein we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiologic diagnoses. METHODS: We performed WES (mean coverage approximately 40×) on 10 trios comprised of unaffected parents and a child with sporadic epilepsy characterized by difficult-to-control seizures and some combination of developmental delay, epileptic encephalopathy, autistic features, cognitive impairment, or motor deficits. Sequence processing and variant calling were performed using standard bioinformatics tools. A custom filtering system was used to prioritize de novo variants of possible functional significance for validation by Sanger sequencing. KEY FINDINGS: In 9 of 10 probands, we identified one or more de novo variants predicted to alter protein function, for a total of 15. Four probands had de novo mutations in genes previously shown to harbor heterozygous mutations in patients with severe, early onset epilepsies (two in SCN1A, and one each in CDKL5 and EEF1A2). In three children, the de novo variants were in genes with functional roles that are plausibly relevant to epilepsy (KCNH5, CLCN4, and ARHGEF15). The variant in KCNH5 alters one of the highly conserved arginine residues of the voltage sensor of the encoded voltage-gated potassium channel. In vitro analyses using cell-based assays revealed that the CLCN4 mutation greatly impaired ion transport by the ClC-4 2Cl(-) /H(+) -exchanger and that the mutation in ARHGEF15 reduced GEF exchange activity of the gene product, Ephexin5, by about 50%. Of interest, these seven probands all presented with seizures within the first 6 months of life, and six of these have intractable seizures. SIGNIFICANCE: The finding that 7 of 10 children carried de novo mutations in genes of known or plausible clinical significance to neuronal excitability suggests that WES will be of use for the molecular genetic diagnosis of sporadic epilepsies in children, especially when seizures are of early onset and difficult to control.
Assuntos
Epilepsia/genética , Exoma/fisiologia , Predisposição Genética para Doença , Mutação/genética , Adolescente , Animais , Arginina/genética , Linhagem Celular , Criança , Pré-Escolar , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Lactente , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Oócitos , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , Análise de Sequência de DNA , Transdução Genética , Transfecção , Xenopus laevis , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
The early history of island Southeast Asia is often characterized as the story of two major population dispersals: the initial Paleolithic colonization of Sahul approximately 45 ka ago and the much later Neolithic expansion of Austronesian-speaking farmers approximately 4 ka ago. Here, in the largest survey of Indonesian Y chromosomes to date, we present evidence for multiple genetic strata that likely arose through a series of distinct migratory processes. We genotype an extensive battery of Y chromosome markers, including 85 single-nucleotide polymorphisms/indels and 12 short tandem repeats, in a sample of 1,917 men from 32 communities located across Indonesia. We find that the paternal gene pool is sharply subdivided between western and eastern locations, with a boundary running between the islands of Bali and Flores. Analysis of molecular variance reveals one of the highest levels of between-group variance yet reported for human Y chromosome data (e.g., Phi(ST) = 0.47). Eastern Y chromosome haplogroups are closely related to Melanesian lineages (i.e., within the C, M, and S subclades) and likely reflect the initial wave of colonization of the region, whereas the majority of western Y chromosomes (i.e., O-M119*, O-P203, and O-M95*) are related to haplogroups that may have entered Indonesia during the Paleolithic from mainland Asia. In addition, two novel markers (P201 and P203) provide significantly enhanced phylogenetic resolution of two key haplogroups (O-M122 and O-M119) that are often associated with the Austronesian expansion. This more refined picture leads us to put forward a four-phase colonization model in which Paleolithic migrations of hunter-gatherers shape the primary structure of current Indonesian Y chromosome diversity, and Neolithic incursions make only a minor impact on the paternal gene pool, despite the large cultural impact of the Austronesian expansion.
Assuntos
Povo Asiático/genética , Evolução Biológica , Cromossomos Humanos Y/genética , Variação Genética , Animais , Sudeste Asiático , Cromossomos Humanos Y/classificação , DNA Mitocondrial/genética , Etnicidade/genética , Pool Gênico , Marcadores Genéticos , Geografia , Haplótipos , História Antiga , Humanos , Masculino , FilogeniaRESUMO
Increasing phylogenetic resolution of the Y chromosome haplogroup tree has led to finer temporal and spatial resolution for studies of human migration. Haplogroup T, initially known as K2 and defined by mutation M70, is found at variable frequencies across West Asia, Africa, and Europe. While several SNPs were recently discovered that extended the length of the branch leading to haplogroup T, only two SNPs are known to mark internal branches of haplogroup T. This low level of phylogenetic resolution has hindered studies of the origin and dispersal of this interesting haplogroup, which is found in Near Eastern non-Jewish populations, Jewish populations from several communities, and in the patrilineage of President Thomas Jefferson. Here we map 10 new SNPs that, together with the previously known SNPs, mark 11 lineages and two large subclades (T1a and T1b) of haplogroup T. We also report a new SNP that links haplogroups T and L within the major framework of Y chromosome evolution. Estimates of the timing of the branching events within haplogroup T, along with a comprehensive geographic survey of the major T subclades, suggest that this haplogroup began to diversify in the Near East -25 kya. Our survey also points to a complex history of dispersal of this rare and informative haplogroup within the Near East and from the Near East to Europe and sub-Saharan Africa. The presence of T1a2 chromosomes in Near Eastern Jewish and non-Jewish populations may reflect early exiles between the ancient lands of Israel and Babylon. The presence of different subclades of T chromosomes in Europe may be explained by both the spread of Neolithic farmers and the later dispersal of Jews from the Near East. Finally, the moderately high frequency (-18%) of T1b* chromosomes in the Lemba of southern Africa supports the hypothesis of a Near Eastern, but not necessarily a Jewish, origin for their paternal line.
Assuntos
Cromossomos Humanos Y/genética , Emigração e Imigração/estatística & dados numéricos , Genética Populacional , Haplótipos/genética , Repetições de Microssatélites/genética , África , Teorema de Bayes , Europa (Continente) , Genótipo , História Antiga , Humanos , Israel , Judeus/genética , Judeus/história , Masculino , Oriente Médio , Polimorfismo de Nucleotídeo Único , TempoRESUMO
A central tenet of evolutionary social science holds that behaviors, such as those associated with social dominance, produce fitness effects that are subject to cultural selection. However, evidence for such selection is inconclusive because it is based on short-term statistical associations between behavior and fertility. Here, we show that the evolutionary effects of dominance at the population level can be detected using noncoding regions of DNA. Highly variable polymorphisms on the nonrecombining portion of the Y chromosome can be used to trace lines of descent from a common male ancestor. Thus, it is possible to test for the persistence of differential fertility among patrilines. We examine haplotype distributions defined by 12 short tandem repeats in a sample of 1269 men from 41 Indonesian communities and test for departures from neutral mutation-drift equilibrium based on the Ewens sampling formula. Our tests reject the neutral model in only 5 communities. Analysis and simulations show that we have sufficient power to detect such departures under varying demographic conditions, including founder effects, bottlenecks, and migration, and at varying levels of social dominance. We conclude that patrilines seldom are dominant for more than a few generations, and thus traits or behaviors that are strictly paternally inherited are unlikely to be under strong cultural selection.
Assuntos
Cromossomos Humanos Y/genética , Haplótipos/genética , População/genética , Humanos , Masculino , Modelos Biológicos , Probabilidade , Reprodutibilidade dos TestesRESUMO
The geographical region between mainland Asia and New Guinea is characterized by numerous small islands with isolated human populations. Phenotypically, groups in the west are similar to their neighbours in mainland Southeast Asia, eastern groups near New Guinea are similar to Melanesians, and intervening populations are intermediate in appearance. A long-standing question is whether this pattern primarily reflects mixing between groups with distinct origins or whether natural selection has shaped this range of variation by acting differentially on populations across the region. To address this question, we genotyped a set of 37 single nucleotide polymorphisms that are evolutionarily independent, putatively neutral and highly informative for Asian-Melanesian ancestry in 1430 individuals from 60 populations spanning mainland Asia to Melanesia. Admixture analysis reveals a sharp transition from Asian to Melanesian genetic variants over a narrow geographical region in eastern Indonesia. Interestingly, this admixture cline roughly corresponds to the human phenotypic boundary noted by Alfred Russell Wallace in 1869. We conclude that this phenotypic gradient probably reflects mixing of two long-separated ancestral source populations-one descended from the initial Melanesian-like inhabitants of the region, and the other related to Asian groups that immigrated during the Paleolithic and/or with the spread of agriculture. A higher frequency of Asian X-linked markers relative to autosomal markers throughout the transition zone suggests that the admixture process was sex-biased, either favouring a westward expansion of patrilocal Melanesian groups or an eastward expansion of matrilocal Asian immigrants. The matrilocal marriage practices that dominated early Austronesian societies may be one factor contributing to this observed sex bias in admixture rates.
Assuntos
Povo Asiático/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Genes Ligados ao Cromossomo X/genética , Genética Populacional , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Polimorfismo de Nucleotídeo Único/genética , Sudeste Asiático/etnologia , Cromossomos Humanos X/genética , Feminino , Frequência do Gene , Variação Genética , Humanos , Indonésia/etnologia , Masculino , Melanesia/etnologiaRESUMO
It has been known for over a decade that a majority of men who self report as members of the Jewish priesthood (Cohanim) carry a characteristic Y chromosome haplotype termed the Cohen Modal Haplotype (CMH). The CMH has since been used to trace putative Jewish ancestral origins of various populations. However, the limited number of binary and STR Y chromosome markers used previously did not provide the phylogenetic resolution needed to infer the number of independent paternal lineages that are encompassed within the Cohanim or their coalescence times. Accordingly, we have genotyped 75 binary markers and 12 Y-STRs in a sample of 215 Cohanim from diverse Jewish communities, 1,575 Jewish men from across the range of the Jewish Diaspora, and 2,099 non-Jewish men from the Near East, Europe, Central Asia, and India. While Cohanim from diverse backgrounds carry a total of 21 Y chromosome haplogroups, 5 haplogroups account for 79.5% of Cohanim Y chromosomes. The most frequent Cohanim lineage (46.1%) is marked by the recently reported P58 T->C mutation, which is prevalent in the Near East. Based on genotypes at 12 Y-STRs, we identify an extended CMH on the J-P58* background that predominates in both Ashkenazi and non-Ashkenazi Cohanim and is remarkably absent in non-Jews. The estimated divergence time of this lineage based on 17 STRs is 3,190 +/- 1,090 years. Notably, the second most frequent Cohanim lineage (J-M410*, 14.4%) contains an extended modal haplotype that is also limited to Ashkenazi and non-Ashkenazi Cohanim and is estimated to be 4.2 +/- 1.3 ky old. These results support the hypothesis of a common origin of the CMH in the Near East well before the dispersion of the Jewish people into separate communities, and indicate that the majority of contemporary Jewish priests descend from a limited number of paternal lineages.
Assuntos
Cromossomos Humanos Y/genética , Judeus/genética , Judaísmo , Etnicidade/genética , Características da Família , Frequência do Gene , Marcadores Genéticos , Geografia , Haplótipos , Humanos , Masculino , Repetições de Microssatélites/genética , Modelos GenéticosRESUMO
A 2.4-kb stretch within the RRM2P4 region of the X chromosome, previously sequenced in a sample of 41 globally distributed humans, displayed both an ancient time to the most recent common ancestor (e.g., a TMRCA of approximately 2 million years) and a basal clade composed entirely of Asian sequences. This pattern was interpreted to reflect a history of introgressive hybridization from archaic hominins (most likely Asian Homo erectus) into the anatomically modern human genome. Here, we address this hypothesis by resequencing the 2.4-kb RRM2P4 region in 131 African and 122 non-African individuals and by extending the length of sequence in a window of 16.5 kb encompassing the RRM2P4 pseudogene in a subset of 90 individuals. We find that both the ancient TMRCA and the skew in non-African representation in one of the basal clades are essentially limited to the central 2.4-kb region. We define a new summary statistic called the minimum clade proportion (pmc), which quantifies the proportion of individuals from a specified geographic region in each of the two basal clades of a binary gene tree, and then employ coalescent simulations to assess the likelihood of the observed central RRM2P4 genealogy under two alternative views of human evolutionary history: recent African replacement (RAR) and archaic admixture (AA). A molecular-clock-based TMRCA estimate of 2.33 million years is a statistical outlier under the RAR model; however, the large variance associated with this estimate makes it difficult to distinguish the predictions of the human origins models tested here. The pmc summary statistic, which has improved power with larger samples of chromosomes, yields values that are significantly unlikely under the RAR model and fit expectations better under a range of archaic admixture scenarios.
Assuntos
Cromossomos Humanos X/genética , Genealogia e Heráldica , Modelos Genéticos , DNA Intergênico/genética , Demografia , Variação Genética , Humanos , Funções Verossimilhança , Filogenia , Análise de Sequência de DNARESUMO
Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.
Assuntos
Surdez/genética , Exoma , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Fatores de Transcrição/genética , Estudos de Coortes , Análise Mutacional de DNA , Éxons , Saúde da Família , Feminino , Variação Genética , Genoma Humano , Geografia , Homozigoto , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto , Linhagem , Sibéria , Transportadores de Sulfato , TransativadoresRESUMO
The highly structured distribution of Y-chromosome haplogroups suggests that current patterns of variation may be informative of past population processes. However, limited phylogenetic resolution, particularly of subclades within haplogroup K, has obscured the relationships of lineages that are common across Eurasia. Here we genotype 13 new highly informative single-nucleotide polymorphisms in a worldwide sample of 4413 males that carry the derived allele at M526, and reconstruct an NRY haplogroup tree with significantly higher resolution for the major clade within haplogroup K, K-M526. Although K-M526 was previously characterized by a single polytomy of eight major branches, the phylogenetic structure of haplogroup K-M526 is now resolved into four major subclades (K2a-d). The largest of these subclades, K2b, is divided into two clusters: K2b1 and K2b2. K2b1 combines the previously known haplogroups M, S, K-P60 and K-P79, whereas K2b2 comprises haplogroups P and its subhaplogroups Q and R. Interestingly, the monophyletic group formed by haplogroups R and Q, which make up the majority of paternal lineages in Europe, Central Asia and the Americas, represents the only subclade with K2b that is not geographically restricted to Southeast Asia and Oceania. Estimates of the interval times for the branching events between M9 and P295 point to an initial rapid diversification process of K-M526 that likely occurred in Southeast Asia, with subsequent westward expansions of the ancestors of haplogroups R and Q.