RESUMO
We report on the epitaxial strain-driven electronic and antiferromagnetic modulations of a pseudospin-half square-lattice realized in superlattices of (SrIrO_{3})_{1}/(SrTiO_{3})_{1}. With increasing compressive strain, we find the low-temperature insulating behavior to be strongly suppressed with a corresponding systematic reduction of both the Néel temperature and the staggered moment. However, despite such a suppression, the system remains weakly insulating above the Néel transition. The emergence of metallicity is observed under large compressive strain but only at temperatures far above the Néel transition. These behaviors are characteristics of the Slater-Mott crossover regime, providing a unique experimental model system of the spin-half Hubbard Hamiltonian with a tunable intermediate coupling strength.
RESUMO
The search continues for means of making quick determinations of the efficacy of a coating for protecting a metal surface against corrosion. One means of reducing the time scale needed to differentiate the performance of different coatings is to draw from nanoscale measurements inferences about macroscopic behavior. Here we connect observations of the penetration of water into plasma polymerized (PP) protective coatings and the character of the interface between the coating and an oxide-coated aluminum substrate or model oxide-coated silicon substrate to the macroscopically observable corrosion for those systems. A plasma polymerized film from hexamethyldisiloxane (HMDSO) monomer is taken as illustrative of a hydrophobic coating, while a PP film from maleic anhydride (MA) is used as a characteristically hydrophilic coating. The neutron reflectivity (NR) of films on silicon oxide coated substrates shows that water moves more readily through the hydrophilic PP-MA film. Off-specular X-ray scattering indicates the PP-MA film on aluminum is less conformal with the substrate than is the PP-HMDSO film. Measurements with infrared-visible sum frequency generation spectroscopy (SFG), which probes the chemical nature of the interface, make clear that the chemical interactions between coating and aluminum oxide are disrupted by interfacial water. With this water penetration and interface disruption, macroscopic corrosion can occur much more rapidly. An Al panel coated with PP-MA corrodes after 1 day in salt spray, while a similarly thin (â¼30 nm) PP-HMDSO coating protects an Al panel for a period on the order of one month.