RESUMO
Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia-telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia-telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.
Assuntos
Envelhecimento/patologia , Diferenciação Celular , Senescência Celular , Células-Tronco Hematopoéticas/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Envelhecimento/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proliferação de Células , Feminino , Hematopoese , Células-Tronco Hematopoéticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Thymic dendritic cells (DCs) promote immune tolerance by regulating negative selection of autoreactive T cells in the thymus. How DC homing to the thymus is transcriptionally regulated is still unclear. Microphthalmia-associated transcription factor (Mitf) is broadly expressed and plays essential roles in the hematopoietic system. Here, we used Mitf-mutated mice (Mitfvit/vit) and found enlargement of the thymus and expansion of CD4/CD8 double-positive T cells. Mitf was highly expressed in a subset of thymic DCs among the hematopoietic system. Genetic mutation or pharmacological inhibition of Mitf in DCs decreased the expression levels of Itga4, which are critical molecules for the homing of DCs to the thymus. Further, inhibition of Mitf decreased thymic DC number. These results suggest a pivotal role of Mitf in the maintenance of T cell differentiation by regulating the homing of DC subsets within the thymus.
Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Fator de Transcrição Associado à Microftalmia/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Hiperplasia , Integrina alfa4/genética , Integrina alfa4/imunologia , Integrina alfa4/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , Timo/metabolismo , Timo/patologiaRESUMO
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promising potential for opening new avenues in regenerative medicine. However, since the tumorigenic potential of undifferentiated pluripotent stem cells (PSCs) is a major safety concern for clinical transplantation, inducible Caspase-9 (iC9) is under consideration for use as a fail-safe system. Here, we used targeted gene editing to introduce the iC9 system into human iPSCs, and then interrogated the efficiency of inducible apoptosis with normal iPSCs as well as diseased iPSCs derived from patients with acute myeloid leukemia (AML-iPSCs). The iC9 system induced quick and efficient apoptosis to iPSCs in vitro. More importantly, complete eradication of malignant cells without AML recurrence was shown in disease mouse models by using AML-iPSCs. In parallel, it shed light on several limitations of the iC9 system usage. Our results suggest that careful use of the iC9 system will serve as an important countermeasure against posttransplantation adverse events in stem cell transplantation therapies.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Apoptose , Caspase 9/genética , Caspase 9/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismoRESUMO
The proportion of elderly patients with diffuse large B cell lymphoma (DLBCL) appears to be increasing, with outcomes varying widely because of the patients' heterogeneity. Geriatric assessment is used to predict prognosis in elderly patients with DLBCL, but the utility of two simple screening tools for patients with DLBCL, the Flemish version of the Triage Risk Screening Tool (fTRST) and G8, has remained to be elucidated. We retrospectively assessed patients using fTRST and G8, and evaluated the impacts of the scores on survival outcomes in older patients with newly diagnosed DLBCL. A total of 59 patients aged 65 years or older and who were diagnosed with DLBCL were included. The median age was 77 years (range, 65-91 years), and the initial treatments were R-CHOP (63%) and R-THPCOP (31%). The estimated 2-year overall survival (OS) rate was significantly lower in patients with abnormal fTRST scores (≥ 2; N = 17) than in those with normal fTRST scores (< 2; N = 42): (50.5% (95% CI, 22.7-73.0%) vs. 82.2% (95% CI, 63.8-91.8%), P = 0.007). The estimated 2-year OS rate was significantly lower also in patients with abnormal G8 scores (≤ 14; N = 38) than in those with normal G8 scores (> 14; N = 21): (66.1% (95% CI, 46.7-79.5%) vs. 86.8% (95% CI, 55.7-96.7%), P = 0.03, respectively). These associations were independently significant after adjusting for other significant factors by multivariate analysis. These results suggest that the easy-to-use geriatric screening tools, fTRST and G8, have strong prognostic value for OS in older patients with DLBCL.
Assuntos
Avaliação Geriátrica , Linfoma Difuso de Grandes Células B/mortalidade , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Masculino , Programas de Rastreamento/métodos , Prednisolona/administração & dosagem , Prognóstico , Estudos Retrospectivos , Rituximab/administração & dosagem , Resultado do Tratamento , Vincristina/administração & dosagemRESUMO
Mucormycosis generally develops under immunocompromised conditions, including hematological malignancies and solid organ or hematopoietic stem cell transplantation. Although mucormycosis usually affects the lungs and paranasal sinuses, sporadic cases of invasive mucormycosis of the liver have been reported. We hereby report a patient with myelofibrosis who developed hepatic mucormycosis diagnosed by post-mortem examination. An extensive literature review identified 13 reported cases of hepatic mucormycosis, including ours, without lung involvement. Most of the underlying diseases or conditions were hematological malignancies and solid organ transplantation. Three cases had splenic lesions and four had gastrointestinal lesions, suggesting the possibility of translocation to the liver and/or spleen from the gastrointestinal tracts. Hepatic mucormycosis should be recognized as one of the presentations of invasive mucormycosis, especially when hepatic nodules are found in immunocompromised patients such as those with hematological malignancy or recipients of solid organ transplantation.
Assuntos
Infecções Fúngicas Invasivas/complicações , Hepatopatias/microbiologia , Mucormicose/complicações , Idoso , Anfotericina B/administração & dosagem , Anfotericina B/uso terapêutico , Antifúngicos/administração & dosagem , Antifúngicos/uso terapêutico , Autopsia , Evolução Fatal , Ferritinas/sangue , Galactose/análogos & derivados , Humanos , Infecções Fúngicas Invasivas/sangue , Infecções Fúngicas Invasivas/tratamento farmacológico , Hepatopatias/diagnóstico , Hepatopatias/tratamento farmacológico , Masculino , Mananas/sangue , Mucormicose/sangue , Mucormicose/tratamento farmacológico , Mielofibrose Primária/sangue , Mielofibrose Primária/complicações , Mielofibrose Primária/tratamento farmacológico , Baço/patologiaRESUMO
A 37-year-old woman was diagnosed with chronic phase chronic myeloid leukemia. Nilotinib treatment was initiated; however, it had to be discontinued due to an allergic reaction one month later, and dasatinib treatment was provided. Although favorable response was obtained, she started complaining of shortness of breath 7 months after initiating dasatinib treatment. Chest X-ray and echocardiography indicated pulmonary congestion and hypertension. Further, she was diagnosed with mixed connective tissue disease (MCTD) based on Raynaud phenomenon, swollen fingers, sclerodactyly, pancytopenia, hypocomplementemia, and positive anti-U1-RNP antibody. Consequently, dasatinib treatment was discontinued, and she was administered prednisolone (1 mg/kg/day), which was effective and successfully tapered with concomitant administration of cyclophosphamide. This is the first case of MCTD that developed during dasatinib treatment. However, because the present case was a young woman, the development of MCTD could probably be attributed to autoimmune diatheses or it may be a coincidence. However, the possibility of patients receiving dasatinib treatment developing autoimmune diseases needs to be assessed.
Assuntos
Dasatinibe/efeitos adversos , Hipertensão Pulmonar/induzido quimicamente , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Doença Mista do Tecido Conjuntivo/induzido quimicamente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dasatinibe/uso terapêutico , Feminino , Humanos , Resultado do TratamentoRESUMO
Brentuximab vedotin (BV) is a novel agent used for the treatment of relapsed or refractory Hodgkin lymphoma. We have described two patients with refractory Hodgkin lymphoma, who were successfully treated with BV followed by allogeneic hematopoietic stem cell transplantation (HSCT). Although both patients were resistant to conventional chemotherapies, they responded to four or five doses of BV given every 3 weeks. Then, the patients underwent bone marrow transplantation from unrelated donors after reduced-intensity conditioning consisting of fludarabine and melphalan. They remained progression-free for more than 3 years after the transplantation. These findings suggest that BV could be a promising bridging therapy to curative allogeneic HSCT for relapsed or refractory Hodgkin lymphoma. Further accumulation of such cases is warranted to evaluate the efficacy and safety of BV therapy prior to allogeneic HSCT.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Doença de Hodgkin/terapia , Imunoconjugados/uso terapêutico , Adulto , Brentuximab Vedotin , Feminino , Humanos , Masculino , Recidiva , Resultado do Tratamento , Adulto JovemRESUMO
Cytomegalovirus (CMV) enteritis (or colitis) is generally diagnosed in immunocompromised patients in association with human immunodeficiency virus infection as well as in recipients of solid organ or hematopoietic stem cell transplant. CMV enteritis has been reported only sporadically in immunocompetent individuals. We encountered a 76-year-old woman who developed CMV enteritis without any previously identified immunocompromised states. An extensive literature review of 33 cases of CMV enteritis or colitis diagnosed in immunocompetent individuals, including the present case, revealed that the median age of the patients was 68, the accompanying symptoms were diarrhea (76%), abdominal pain (52%), and hematochezia or melena (27%), and that the outcome was generally favorable, including resolution without any treatment in 24% of the patients. CMV enteritis should be recognized more widely as a disease entity not only in immunocompromised patients but also in immunocompetent individuals, especially in elderly populations.
Assuntos
Infecções por Citomegalovirus/etiologia , Enterite/etiologia , Idoso , Feminino , HumanosRESUMO
A 62-year-old man with refractory leukemia transformed from myelodysplastic syndrome was placed on hydroxyurea (hydroxycarbamide) at a daily dose of 500 mg. Because of insufficient cytoreductive efficacy, the dose was increased to 1,500 mg five days later. Eight days after the initiation of hydroxyurea, the patient started complaining of chills, fever, and vomiting. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were markedly elevated to 5,098 and 3,880 IU/l from 44 and 59 IU/l in one day, respectively. Tests for hepatitis viruses were all negative. With the discontinuation of hydroxyurea, AST and ALT returned to their former levels within two weeks. A drug-induced lymphocyte stimulation test for hydroxyurea was positive with a stimulating index of 2.0. Hepatic dysfunction has been recognized as one of the side effects of hydroxyurea. However, there have been only a limited number of reports demonstrating drug allergy to have a role in hepatic dysfunction accompanied by fever and gastrointestinal symptoms. The findings of our case strongly suggest that all presentations could be explained by drug allergy. Physicians should be mindful of the potential for acute and severe hepatic dysfunction due to allergic reaction against hydroxyurea.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/imunologia , Hidroxiureia/efeitos adversos , Hidroxiureia/imunologia , Testes Imunológicos/métodos , Ativação Linfocitária/imunologia , Evolução Fatal , Humanos , Leucemia/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológicoRESUMO
Rare preleukemic hematopoietic stem cells (pHSC) harboring only the initiating mutations can be detected at the time of acute myeloid leukemia (AML) diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSC). We confirm that IDH1-driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in the complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wild-type HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent the development and relapse of leukemia. SIGNIFICANCE: A high burden of pHSCs is associated with worse overall survival in AML. Using single-cell sequencing, metabolic assessment, and gene-edited human models, we find human pHSCs with IDH1 mutations to be metabolically vulnerable and sensitive to eradication by complex I inhibition. See related commentary by Steensma.
RESUMO
Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to appropriately meet the biological demands of the human body. Human MPPs remain ill-defined whereas mouse MPPs have been well characterized with distinct immunophenotypes and lineage potencies. Using multiomic single cell analyses and complementary functional assays, we identified new human MPPs and oligopotent progenitor populations within Lin-CD34+CD38dim/lo adult bone marrow with distinct biomolecular and functional properties. These populations were prospectively isolated based on expression of CD69, CLL1, and CD2 in addition to classical markers like CD90 and CD45RA. We show that within the canonical Lin-CD34+CD38dim/loCD90CD45RA-MPP population, there is a CD69+ MPP with long-term engraftment and multilineage differentiation potential, a CLL1+ myeloid-biased MPP, and a CLL1-CD69-erythroid-biased MPP. We also show that the canonical Lin-CD34+CD38dim/loCD90-CD45RA+ LMPP population can be separated into a CD2+ LMPP with lymphoid and myeloid potential, a CD2-LMPP with high lymphoid potential, and a CLL1+ GMP with minimal lymphoid potential. We used these new HSPC profiles to study human and mouse bone marrow cells and observe limited cell type specific homology between humans and mice and cell type specific changes associated with aging. By identifying and functionally characterizing new adult MPP sub-populations, we provide an updated reference and framework for future studies in human hematopoiesis.
RESUMO
CRISPR-Cas9 paired with adeno-associated virus serotype 6 (AAV6) is among the most efficient tools for producing targeted gene knockins. Here, we report that this system can lead to frequent concatemeric insertions of the viral vector genome at the target site that are difficult to detect. Such errors can cause adverse and unreliable phenotypes that are antithetical to the goal of precision genome engineering. The concatemeric knockins occurred regardless of locus, vector concentration, cell line or cell type, including human pluripotent and hematopoietic stem cells. Although these highly abundant errors were found in more than half of the edited cells, they could not be readily detected by common analytical methods. We describe strategies to detect and thoroughly characterize the concatemeric viral vector insertions, and we highlight analytical pitfalls that mask their prevalence. We then describe strategies to prevent the concatemeric inserts by cutting the vector genome after transduction. This approach is compatible with established gene editing pipelines, enabling robust genetic knockins that are safer, more reliable and more reproducible.
RESUMO
Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.
Assuntos
Trifosfato de Adenosina , Células-Tronco Hematopoéticas , Mitocôndrias , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Camundongos , Senescência Celular , Camundongos Endogâmicos C57BL , Glicólise , Envelhecimento/metabolismo , Estresse OxidativoRESUMO
Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.
Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismoRESUMO
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (â¼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismoRESUMO
Despite the complexity of hematopoietic cell transplantation in humans, researchers commonly perform intravenous or intrafemoral (IF) injections in mice. In murine models, this technique has been adapted to enhance the seeding efficiency of transplanted hematopoietic stem and progenitor cells (HSPCs). This paper describes a detailed step-by-step technical procedure of IF injection and the following bone marrow (BM) aspiration in mice that allows for serial characterization of cells present in the BM. This method enables the transplantation of valuable samples with low cell numbers that are particularly difficult to engraft by intravenous injection. This procedure facilitates the creation of xenografts that are critical for pathological analysis. While it is easier to access peripheral blood (PB), the cellular composition of PB does not reflect the BM, which is the niche for HSPCs. Therefore, procedures providing access to the BM compartment are essential for studying hematopoiesis. IF injection and serial BM aspiration, as described here, allow for the prospective retrieval and characterization of cells enriched in the BM, such as HSPCs, without sacrificing the mice.
Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Estudos Prospectivos , Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas/métodos , Células da Medula Óssea , Hematopoese , Transplante de Medula ÓsseaRESUMO
Disease-initiating mutations in the transcription factor RUNX1 occur as germline and somatic events that cause leukemias with particularly poor prognosis. However, the role of RUNX1 in leukemogenesis is not fully understood, and effective therapies for RUNX1-mutant leukemias remain elusive. Here, we used primary patient samples and a RUNX1-KO model in primary human hematopoietic cells to investigate how RUNX1 loss contributes to leukemic progression and to identify targetable vulnerabilities. Surprisingly, we found that RUNX1 loss decreased proliferative capacity and stem cell function. However, RUNX1-deficient cells selectively upregulated the IL-3 receptor. Exposure to IL-3, but not other JAK/STAT cytokines, rescued RUNX1-KO proliferative and competitive defects. Further, we demonstrated that RUNX1 loss repressed JAK/STAT signaling and rendered RUNX1-deficient cells sensitive to JAK inhibitors. Our study identifies a dependency of RUNX1-mutant leukemias on IL-3/JAK/STAT signaling, which may enable targeting of these aggressive blood cancers with existing agents.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Interleucina-3 , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Interleucina-3/genética , Interleucina-3/farmacologia , Leucemia/tratamento farmacológico , Leucemia/genética , Transdução de SinaisRESUMO
Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.
RESUMO
In physiological conditions, most adult hematopoietic stem cells (HSCs) maintain a quiescent state. Glycolysis is a metabolic process that can be divided into preparatory and payoff phases. Although the payoff phase maintains HSC function and properties, the role of the preparatory phase remains unknown. In this study, we aimed to investigate whether the preparatory or payoff phases of glycolysis were required for maintenance of quiescent and proliferative HSCs. We used glucose-6-phosphate isomerase (Gpi1) as a representative gene for the preparatory phase and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as a representative gene for the payoff phase of glycolysis. First, we identified that stem cell function and survival were impaired in Gapdh-edited proliferative HSCs. Contrastingly, cell survival was maintained in quiescent Gapdh- and Gpi1-edited HSCs. Gapdh- and Gpi1-defective quiescent HSCs maintained adenosine-triphosphate (ATP) levels by increasing mitochondrial oxidative phosphorylation (OXPHOS), whereas ATP levels were decreased in Gapdh-edited proliferative HSCs. Interestingly, Gpi1-edited proliferative HSCs maintained ATP levels independent of increased OXPHOS. Oxythiamine, a transketolase inhibitor, impaired proliferation of Gpi1-edited HSCs, suggesting that the nonoxidative pentose phosphate pathway (PPP) is an alternative means to maintain glycolytic flux in Gpi1-defective HSCs. Our findings suggest that OXPHOS compensated for glycolytic deficiencies in quiescent HSCs, and that in proliferative HSCs, nonoxidative PPP compensated for defects in the preparatory phase of glycolysis but not for defects in the payoff phase. These findings provide new insights into regulation of HSC metabolism, which could have implications for development of novel therapies for hematologic disorders.
Assuntos
Glicólise , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Glicólise/genética , Fosforilação Oxidativa , Via de Pentose Fosfato/genética , Trifosfato de Adenosina/metabolismoRESUMO
Other than genetically engineered mice, few reliable platforms are available for the study of hematopoietic stem cell (HSC) quiescence. Here we present a platform to analyze HSC cell cycle quiescence by combining culture conditions that maintain quiescence with a CRISPR-Cas9 genome editing system optimized for HSCs. We demonstrate that preculture of HSCs enhances editing efficiency by facilitating nuclear transport of ribonucleoprotein complexes. For post-editing culture, mouse and human HSCs edited based on non-homologous end joining and cultured under low-cytokine, low-oxygen, and high-albumin conditions retain their phenotypes and quiescence better than those cultured under the proliferative conditions. Using this approach, HSCs regain quiescence even after editing by homology-directed repair. Our results show that low-cytokine culture conditions for gene-edited HSCs are a useful approach for investigating HSC quiescence ex vivo.