Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 91(17): 11162-11169, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31405276

RESUMO

A quantitative description of glyco-alteration/differences in diseases can lead to the development of a diagnostic agent for use in vitro to monitor the degree of change in target glycoproteins. Analytical systems have been developed along with the progress of omics-oriented technologies. For clinical implementation, their full automation is required with an apparatus that is simple to operate. Here, we report an automatic analysis system for quantitative characterization of glyco-alteration/differences that depends on the unique strategy of "bead arrays in a single tip." The alternative lectin array can obtain a minimum characterization of the glycan profile for nanogram quantities of an endogenous glycoprotein. A simple autopipetting robot produces the precise chemiluminescence detection of glycan-lectin interactions with a wide dynamic range that is superior to fluorescence-based lectin arrays. The tip-based array format enables automatic glycan profiling from sample pretreatment to detection with low variation and linear detection, which may facilitate the use of this lectin array in clinical practice.


Assuntos
Automação , Glicoproteínas/análise , Lectinas/química , Fluorescência , Espectrometria de Massas , Análise em Microsséries
2.
Curr Protoc Protein Sci ; 99(1): e103, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32073758

RESUMO

Lectin is a biomolecule that recognizes a specific part of glycans and, thus, has been used widely as a probe for glycoprotein analysis. Owing to the wide repertoire in nature combined with the recent two decades of advances in microarray technology, the multiplexed use of lectins has been widely used for glycan profiling of endogenous proteins. Because protein glycosylation is recognized as being biologically important and is expected to be a reliable disease marker, lectin microarray analysis with highly sensitive detection has been used to discover disease-relevant glycosylation alterations. However, the conventional system is limited to research purposes; thus, its implementation in clinical settings is warranted. Here, we provide an automatic glycan profiling method using GlycoBIST. A unique array format is used for 10-plexed lectin-glycoprotein interaction analysis on 1-mm-sized beads, which are arranged vertically in a capillary-shaped plastic tip. Using a one-boxed autopipetting machine, the whole process (including interaction, washing, and detection) is performed automatically and serially, resulting in reproducible measurements. In this article, a typical method for glycan profiling of a purified glycoprotein and the fabrication of GlycoBIST tips is explained. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Fabrication of a GlycoBIST tip Basic Protocol 2: Automatic profiling of a target glycoprotein using GlycoBIST.


Assuntos
Glicoproteínas/análise , Lectinas/química , Análise Serial de Proteínas , Glicoproteínas/metabolismo , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA