Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628523

RESUMO

Copper is required for aerobic respiration by Mycobacterium tuberculosis and its human host, but this essential element is toxic in abundance. Copper nutritional immunity refers to host processes that modulate levels of free copper to alternately starve and intoxicate invading microbes. Bacteria engulfed by macrophages are initially contained within copper-limited phagosomes, which fuse with ATP7A vesicles that pump in toxic levels of copper. In this report, we examine how CtpB, a P-type ATPase in M. tuberculosis, aids in response to nutritional immunity. In vitro, the induced expression of ctpB in copper-replete medium inhibited mycobacterial growth, while deletion of the gene impaired growth only in copper-starved medium and within copper-limited host cells, suggesting a role for CtpB in copper acquisition or export to the copper-dependent respiration supercomplex. Unexpectedly, the absence of ctpB resulted in hypervirulence in the DBA/2 mouse infection model. As ctpB null strains exhibit diminished growth only in copper-starved conditions, reduced copper transport may have enabled the mutant to acquire a "Goldilocks" amount of the metal during transit through copper-intoxicating environments within this model system. This work reveals CtpB as a component of the M. tuberculosis toolkit to counter host nutritional immunity and underscores the importance of elucidating copper-uptake mechanisms in pathogenic mycobacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Cobre/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Tuberculose/microbiologia
2.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672733

RESUMO

Sigma factor C (SigC) contributes to Mycobacterium tuberculosis virulence in various animal models, but the stress response coordinated by this transcription factor was undefined. The results presented here indicate that SigC prevents copper starvation. Whole genome expression studies demonstrate short-term (4-h) induction of sigC, controlled from a tetracycline-inducible promoter, upregulates ctpB and genes in the nonribosomal peptide synthase (nrp) operon. These genes are expressed at higher levels after 48-h sigC induction, but also elevated are genes encoding copper-responsive regulator RicR and RicR-regulated copper toxicity response operon genes rv0846-rv0850, suggesting prolonged sigC induction results in excessive copper uptake. No growth and global transcriptional differences are observed between a sigC null mutant relative to its parent strain in 7H9 medium. In a copper-deficient medium, however, growth of the sigC deletion strain lags the parent, and 40 genes (including those in the nrp operon) are differentially expressed. Copper supplementation reverses the growth defect and silences most transcriptional differences. Together, these data support SigC as a transcriptional regulator of copper acquisition when the metal is scarce. Attenuation of sigC mutants in severe combined immunodeficient mice is consistent with an inability to overcome innate host defenses that sequester copper ions to deprive invading microbes of this essential micronutrient.


Assuntos
Cobre/farmacologia , Imunidade/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Fator sigma/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Sulfato de Cobre/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Camundongos SCID , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fenótipo , Transcrição Gênica/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
3.
Rev Argent Microbiol ; 48(1): 21-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26948102

RESUMO

Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease.


Assuntos
Mycobacterium tuberculosis/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Concentração de Íons de Hidrogênio
4.
Can J Microbiol ; 61(12): 938-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26492080

RESUMO

Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Alvéolos Pulmonares/microbiologia , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/citologia , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Alvéolos Pulmonares/citologia , Tuberculose/fisiopatologia
5.
Cell Microbiol ; 14(9): 1402-14, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22519722

RESUMO

Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno-electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria-containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP-2 and cathepsin-L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis-containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3-methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these data suggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.


Assuntos
Autofagia , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Mycobacterium tuberculosis/patogenicidade , Linhagem Celular , Endossomos/microbiologia , Células Epiteliais/ultraestrutura , Humanos , Lisossomos/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica
6.
Immunol Cell Biol ; 90(10): 945-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22801575

RESUMO

New approaches consisting of 'multistage' vaccines against (TB) are emerging that combine early antigenic proteins with latency-associated antigens. In this study, HspX was tested for its potential to elicit both short- and long-term protective immune responses. HspX is a logical component in vaccine strategies targeting protective immune responses against primary infection, as well as against reactivation of latent infection, because as previously shown, it is produced during latency, and as our studies show, it elicits protection within 30 days of infection. Recent studies have shown that the current TB vaccine, bacilli Calmette-Guerin (BCG), does not induce strong interferon-γ T-cell responses to latency-associated antigens like HspX, which may be in part why BCG fails to protect against reactivation disease. We therefore tested HspX protein alone as a prophylactic vaccine and as a boost to BCG vaccination, and found that HspX purified from M. tuberculosis cell lysates protected mice against aerosol challenge and improved the protective efficacy of BCG when used as a booster vaccine. Native HspX was highly immunogenic and protective, in a dose-dependent manner, in both short- and long-term infection models. Based on these promising findings, HspX was produced as a recombinant protein in E. coli, as this would enable facile purification; however, recombinant HspX (rHspX) alone consistently failed to protect against aerosol challenge. Incubation of rHspX with mycobacterial cell lysate and re-purification following incubation restored the capacity of the protein to confer protection. These data suggest the possibility that the native form may chaperone an immunogenic and protective antigen that is mycobacteria-specific.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Chaperonas Moleculares/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Escherichia coli/genética , Feminino , Humanos , Imunidade Ativa/genética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transgenes/genética
7.
Can J Microbiol ; 58(7): 909-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22720783

RESUMO

Mycobacterium tuberculosis strains CDC1551 and Erdman were used to assess cytotoxicity in infected A549 human alveolar epithelial cell monolayers. Strain CDC1551 was found to induce qualitatively greater disruption of A549 monolayers than was strain Erdman, although total intracellular and cell-associated bacterial growth rates over the course of the infections were not significantly different. Cell-free culture supernatants from human monocytic cells infected with either of the 2 M. tuberculosis strains produced a cytotoxic effect on A549 cells, correlating with the amount of tumor necrosis factor alpha (TNF-α) released by the infected monocytes. The addition of TNF-α-neutralizing antibodies to the supernatants from infected monocyte cultures did prevent the induction of a cytotoxic effect on A549 cells overlaid with this mixture but did not prevent the death of epithelial cells when added prior to infection with M. tuberculosis bacilli. Thus, these data agree with previous observations that lung epithelial cells infected with M. tuberculosis bacilli are rapidly killed in vitro. In addition, the data indicate that some of the observed epithelial cell killing may be collateral damage; the result of TNF-α released from M. tuberculosis-infected monocytes.


Assuntos
Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Meios de Cultivo Condicionados/toxicidade , Testes Imunológicos de Citotoxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Monócitos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
8.
BMC Immunol ; 9: 25, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18533024

RESUMO

BACKGROUND: The role of Mycobacteria in the etiology of Crohn's disease (CD) has been a contentious subject for many years. Recently, our laboratory showed that spontaneous colitis in IL-10-/- mice is driven in part by antigens (Ags) conserved in Mycobacteria. The present study dissects some of the common cellular and molecular mechanism that drive Mycobacteria-mediated and spontaneous colitis in IL-10-/- mice. RESULTS: We show that serum from inflammatory bowel disease (IBD) patients contain significantly higher levels of Mycobacterium avium paratuberculosis-specific IgG1 and IgG2 antibodies (Abs), serum amyloid A (SAA) as well as CXCR3 ligands than serum from healthy donors. To study the cellular mechanisms of Mycobacteria-associated colitis, pathogen-free IL-10-/- mice were given heat-killed or live M. avium paratuberculosis. The numbers of mucosal T cells, neutrophils, NK/NKT cells that expressed TNFalpha, IFN-gamma, and/or CXCL10 were significantly higher in mice that received live Mycobacteria than other groups. The numbers of mucosal CXCR3+, CXCL9+, CXCL11+ and/or IFN-gamma+ dendritic cells (DCs) were also significantly higher in M. avium paratuberculosis-challenged mice, than compared to control mice. CONCLUSION: The present study shows that CD and UC patients mount significant Mycobacteria-specific IgG1 > IgG2 and CXCR3 ligand responses. Several cellular mechanisms that drive spontaneous colitis also mediate Mycobacteria-enhanced colitis in IL-10-/- mice. Similar to IL-10-/- mice under conventional housing, we show that Mycobacteria-challenge IL-10-/- mice housed under otherwise pathogen-free conditions develop colitis that is driven by CXCR3- and CXCR3 ligand-expressing leukocytes, which underscores another important hallmark and molecular mechanism of colitis. Together, the data show that Mycobacteria-dependent host responses, namely CXCL10+ T cells and NK cells, assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes to enhance colitis of susceptible hosts.


Assuntos
Anticorpos Antibacterianos/sangue , Colite/imunologia , Citocinas/imunologia , Células Matadoras Naturais/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Linfócitos T/imunologia , Adulto , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Quimiocinas CXC/imunologia , Quimiocinas CXC/metabolismo , Colite/metabolismo , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Doenças Inflamatórias Intestinais/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/deficiência , Interleucina-10/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Proteína Amiloide A Sérica/análise , Proteína Amiloide A Sérica/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Tuberculosis (Edinb) ; 113: 179-188, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30514501

RESUMO

Tuberculosis (TB) is currently the leading cause of death in humans by a single infectious agent, Mycobacterium tuberculosis. The Bacillus Calmette-Guérin (BCG) vaccine prevents pulmonary TB with variable efficacy, but can cause life-threatening systemic infection in HIV-infected infants. In this study, TBvac85, a derivative of Mycobacterium shottsii expressing M. tuberculosis Antigen 85B, was examined as a safer alternative to BCG. Intranasal vaccination of guinea pigs with TBvac85, a naturally temperature-restricted species, resulted in serum Ag85B-specific IgG antibodies. Delivery of the vaccine by this route also induced protection equivalent to intradermal BCG based on organ bacterial burdens and lung pathology six weeks after aerosol challenge with M. tuberculosis strain Erdman. These results support the potential of TBvac85 as the basis of an effective TB vaccine. Next-generation derivatives expressing multiple M. tuberculosis immunogens are in development.


Assuntos
Aciltransferases/administração & dosagem , Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Imunidade nas Mucosas/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Aciltransferases/genética , Aciltransferases/imunologia , Administração Intranasal , Aerossóis , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Pulmão/imunologia , Pulmão/microbiologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Temperatura , Fatores de Tempo , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Vacinação , Vacinas de DNA/administração & dosagem
10.
Vaccine ; 33(51): 7217-7224, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26552000

RESUMO

Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Portadores de Fármacos , Vírus da Parainfluenza 5/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Aciltransferases/genética , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Pulmão/microbiologia , Camundongos Endogâmicos BALB C , Resultado do Tratamento , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
11.
PLoS One ; 7(9): e45028, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024786

RESUMO

Dynamic, cholesterol-dense regions of the plasma membrane, known as lipid rafts (LR), have been observed to develop during and may be directly involved in infection of host cells by various pathogens. This study focuses on LR aggregation induced in alveolar epithelial cells during infection with Mycobacterium tuberculosis (Mtb) bacilli. We report dose- and time-dependent increases in LR aggregation after infection with three different strains at multiplicities of infection of 1, 10 and 100 from 2-24 hr post infection (hpi). Specific strain-dependent variations were noted among H37Rv, HN878 and CDC1551 with H37Rv producing the most significant increase from 15 aggregates per cell (APC) to 27 APC at MOI 100 during the 24 hour infection period. Treatment of epithelial cells with Culture Filtrate Protein, Total Lipids and gamma-irradiated whole cells from each strain failed to induce the level of LR aggregation observed during infection with any of the live strains. However, filtered supernatants from infected epithelial cells did produce comparable LR aggregation, suggesting a secreted mycobacterial product produced during infection of host cells is responsible for LR aggregation. Disruption of lipid raft formation prior to infection indicates that Mtb bacilli utilize LR aggregates for internalization and survival in epithelial cells. Treatment of host cells with the LR-disruption agent Filipin III produced a nearly 22% reduction in viable bacteria for strains H37Rv and HN878, and a 7% reduction for strain CDC1551 after 6 hpi. This study provides evidence for significant mycobacterial-induced changes in the plasma membrane of alveolar epithelial cells and that Mtb strains vary in their ability to facilitate aggregation and utilization of LR.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Microdomínios da Membrana/metabolismo , Mycobacterium tuberculosis/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Filipina/farmacologia , Raios gama , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos da radiação , Fagocitose/efeitos dos fármacos , Transporte Proteico , Receptores Toll-Like/metabolismo
12.
Rev. argent. microbiol ; 48(1): 21-26, mar. 2016. graf, tab
Artigo em Inglês | LILACS | ID: biblio-843152

RESUMO

Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-14C]-sphingomyelin as substrate. Acidic Zn2+-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease.


Las esfingomielinasas (SMasas) catalizan la hidrólisis de esfingomielina a ceramida y fosforilcolina. Los esfingolípidos son reconocidos como reguladores diversos y dinámicos de una multitud de procesos celulares que median en el control del ciclo celular, la diferenciación, la respuesta al estrés, la migración celular, la adhesión y la apoptosis. Las esfingomielinasas bacterianas son factores de virulencia reconocidos en varias especies de patógenos. En este trabajo se analizaron los extractos de células enteras de las cepas de Mycobacterium tuberculosis H37Rv y CDC1551 utilizando [N-metil-14C]-esfingomielina como sustrato. Se identificó actividad de SMasa-ácida dependiente de zinc en ambas cepas. La actividad máxima se observó a pH 5.5. Curiosamente, los niveles de actividad de SMasa generados a partir de extractos de la cepa CDC1551 son aproximadamente un tercio de los de la cepa H37Rv. La presencia de una SMasa exógena producida por M. tuberculosis durante la infección puede interferir con la respuesta inflamatoria del huésped, permitiendo así el establecimiento de la infección y el desarrollo de la enfermedad. Esta actividad tipo C es distinta de las actividades previamente reportadas para M. tuberculosis. Definir las características bioquímicas de las esfingomielinasas de M. tuberculosis ayudará a dilucidar el papel que desempeñan estas enzimas durante la infección y la enfermedad.


Assuntos
Esfingomielina Fosfodiesterase/biossíntese , Mycobacterium tuberculosis/isolamento & purificação , Esfingomielina Fosfodiesterase/isolamento & purificação , Fatores de Virulência/análise , México/epidemiologia
13.
Infect Immun ; 75(8): 3722-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17502388

RESUMO

The granulomatous and intramural inflammation observed in cases of inflammatory bowel diseases (IBD) and veterinary Johne's disease suggests that Mycobacterium avium subsp. paratuberculosis is a causative agent. However, an incomplete understanding of the immunological steps responsible for the pathologies of IBD makes this conclusion uncertain. Sera from interleukin-10-deficient (IL-10(-/-)) mice with spontaneous colitis displayed significantly higher M. avium subsp. paratuberculosis-specific immunoglobulin G2a antibody responses than did sera from similar mice without disease. Pathogen-free IL-10(-/-) mice received control vehicle or the vehicle containing heat-killed or live M. avium subsp. paratuberculosis. Mucosal CD4(+) T cells from the mice that developed colitis proliferated and secreted higher levels of gamma interferon and tumor necrosis factor alpha after ex vivo stimulation with a Vbeta11(+) T-cell receptor-restricted peptide from the MPT59 antigen (Ag85B) than those secreted from cells from mice before the onset of colitis. The data from this study provide important information regarding the mechanisms of colitis in IL-10(-/-) mice, which are driven in part by Ag85B-specific T cells. The data suggest a plausible mechanism of Ag-specific T-cell responses in colitis driven by potent Ags conserved in Mycobacterium species.


Assuntos
Colite/microbiologia , Colite/patologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Paratuberculose/patologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Colite/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Interferon gama/biossíntese , Interleucina-10/deficiência , Mucosa Intestinal/imunologia , Ligantes , Camundongos , Camundongos Knockout , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CXCR3 , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/imunologia , Organismos Livres de Patógenos Específicos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Fator de Necrose Tumoral alfa/biossíntese
14.
Microb Pathog ; 41(2-3): 119-24, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16860530

RESUMO

Establishment of pulmonary Mycobacterium tuberculosis infection requires evasion of host innate defenses. In the lung alveoli, epithelial cells naturally resist uptake by the inhaled bacilli while macrophages patrol the epithelial surface and phagocytose foreign microbes. Alveolar microvascular endothelial cells, however, have not been examined as a potential point of direct interaction with the bacilli. It has been shown with other bacterial and viral lung pathogens that the lung endothelial cells are not only a point of interaction, but a source for intracellular replication and chronic infection by the pathogen. To investigate if endothelial cells are susceptible to M. tuberculosis infection, we examined attachment, internalization, and intracellular replication of M. tuberculosis bacilli in an immortalized human lung microvascular endothelial cell line (HULEC). By 6 h post-infection, 12% of infecting bacilli were associated with the HULEC monolayer cells. This was twice the association observed following a similar infection with cells from a human foreskin microvascular endothelial cell line (HMEC-1). As measured by survival after the addition of a high extracellular concentration of the aminoglycoside amikacin, approximately one-third of the associated bacilli were internalized and unavailable to the drug in both cell lines. Using electron microscopy, large numbers of bacilli were visible in the vacuoles of HULEC cells after 48 h post-infection; the presence of bacterial septa between adjacent mycobacteria suggests intracellular replication. These in vitro findings support the hypothesis that lung endothelial cells have the potential to participate in in vivo lung infections.


Assuntos
Células Endoteliais/microbiologia , Mycobacterium tuberculosis/fisiologia , Alvéolos Pulmonares/irrigação sanguínea , Aderência Bacteriana/fisiologia , Infecções Bacterianas/microbiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Microscopia Eletrônica/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
15.
Microbiology (Reading) ; 152(Pt 6): 1591-1600, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16735723

RESUMO

Secondary sigma factors in bacteria direct transcription of defence regulons in response to specific stresses. To identify which sigma factors in the human respiratory pathogen Mycobacterium tuberculosis are important for adaptive survival in vivo, defined null mutations were created in individual sigma factor genes. In this study, in vitro growth virulence and guinea pig pathology of M. tuberculosis mutants lacking functional sigma factors (SigC, SigF, or SigM) were compared to the parent strain, H37Rv. None of the mutant strains exhibited a growth deficiency in Middlebrook 7H9 broth, nor were any impaired for intracellular replication in the human monocytic macrophage cell-line THP-1. Following low-dose aerosol infection of guinea pigs, however, differences could be detected. While a SigM mutant resulted in lung and spleen granulomas of comparable composition to those found in H37Rv-infected animals, a SigF mutant was partially attenuated, exhibiting necrotic spleen granulomas and ill-defined lung granulomas. SigC mutants exhibited attenuation in the lung and spleen; notably, necrotic granulomas were absent. These data suggest that while SigF may be important for survival in the lung, SigC is likely a key regulator of pathogenesis and adaptive survival in the lung and spleen. Understanding how SigC mediates survival in the host should prove useful in the development of anti-tuberculosis therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mutação , Mycobacterium tuberculosis/patogenicidade , Fator sigma/metabolismo , Tuberculose Pulmonar/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Feminino , Cobaias , Humanos , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Monócitos/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fator sigma/genética , Tuberculose Pulmonar/patologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA