Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Langmuir ; 40(10): 5137-5150, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412064

RESUMO

Imidazole, being an interesting dinitrogenic five-membered heterocyclic core, has been widely explored during the last several decades for developing various fascinating materials. Among the different domains where imidazole-based materials find wide applications, the area of optoelectronics has seen an overwhelming growth of functional imidazole derivatives developed through remarkable design and synthesis strategies. The present work reports a design approach for integrating bulky donor units at the four terminals of an imidazole core, leading to the development of sterically populated imidazole-based molecular platforms with interesting structural features. Rationally chosen starting substrates led to the incorporation of a bulky donor at the four terminals of the imidazole core. In addition, homo- and cofunctional molecular systems were synthesized through a suitable combination of initial ingredients. Our approach was extended to develop a series of four molecular systems, i.e., Cz3PhI, Cz4I, Cz3PzI, and TPA3CzI, containing carbazole, phenothiazine, and triphenylamine as known efficient donors at the periphery. Given their interesting structural features, three sterically crowded molecules (Cz4I, Cz3PzI, and TPA3CzI) were screened by using DFT and TD-DFT calculations to investigate their potential as hole transport materials (HTMs) for optoelectronic devices. The theoretical studies on several aspects including hole reorganization and exciton binding energies, ionization potential, etc., revealed their potential as possible candidates for the hole transport layer of OLEDs. Single-crystal analysis of Cz3PhI and Cz3PzI established interesting structural features including twisted geometries, which may help attain high triplet energy. Finally, the importance of theoretical predictions was established by fabricating two solution-process green phosphorescent OLED devices using TPA3CzI and Cz3PzI as HTMs. The fabricated devices exhibited good EQE/PE and CE of ∼15%/56 lm/W/58 cd/A and ∼13%/47 lm/W/50 cd/A, respectively, at 100 cd/m2.

2.
J Org Chem ; 89(11): 7394-7407, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38754107

RESUMO

The biological and medicinal importance of indolocarbazoles has been known for the past several decades. However, in recent times, these compounds have been emerging as potential candidates for optoelectronic applications, although several challenges are associated with their synthesis. We report here a Pd(II)-catalyzed process for the synthesis of indolo[3,2-a]carbazoles. The reaction proceeded under neat conditions and in the presence of aqueous nonmetallic oxidant TBHP, and the products were purified directly after the completion of the reaction. Also, the possibility of employing the present method for reaction with gram-scale feed was investigated. A detailed single-crystal analysis of several indolo[3,2-a]carbazoles revealed how the molecular arrangement can be tuned by altering the functionalization. Finally, the developed molecules were screened computationally to assess their potential for possible use as hole transport materials (HTMs) for organic light-emitting diodes (OLEDs).

3.
Inorg Chem ; 63(8): 3757-3768, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38354394

RESUMO

Continuous increase in carbon dioxide (CO2) emissions are causing imbalances in the environment, which impact biodiversity and human health. The conversion of CO2 to cyclic carbonates by means of metal-organic frameworks (MOFs) as a heterogeneous catalyst is a prominent strategy for rectifying this imbalance. Herein, we have developed nitrogen-rich Zn (II) based metal-organic framework, [Zn(CPMT)(bipy)]n (CPMT = 1-(4-carboxyphenyl)-5-mercapto-1H-tetrazole; bipy = 4,4'-bipyridine), synthesized via a mixed ligand strategy. This Zn-MOF showed high chemical stability in both acidic and basic conditions, and in organic solvents for a long time. On account of the concurrent presence of acid-base active sites and strong chemical stability under abrasive conditions, this Zn-MOF was employed as an effective catalyst for the coupling of CO2 and epoxides, under atmospheric pressure, mild temperature, and neat conditions. This Zn-MOF shows remarkable activity by producing high yields of epichlorohydrin carbonate (98%) and styrene carbonate (82%) at atmospheric CO2 pressure, 70 °C temperature, and 24 h reaction time, with turnover numbers (TON) of 217 and 181, respectively. The Zn-MOF could be reused for up to seven cycles with structural and framework integrity. Overall, this work demonstrates the synthesis of a novel and highly efficient MOF for CO2 conversion.

4.
Phys Chem Chem Phys ; 26(15): 11922-11932, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572672

RESUMO

In recent times, self-assembled electron transport materials for optoelectronic devices, both solar cells and organic light-emitting diodes (OLEDs), have been gaining much interest as they help in fabricating high-efficiency devices. However, designing organic small molecular materials with star-shaped self-assembled networks is a challenge. To achieve this sort of target, we chose triazine and benzene-1,3,5-tricarbonyl cores for developing such architecture, and we developed four molecular systems, vizTCpCN, TCmCN, TmCN, and TpCN. Successful isolation of single crystals followed by structural analysis of TmCN revealed interesting molecular arrangements in the solid state resulting in the formation of a waterwheel type architecture with an extended network bearing characteristic voids. Theoretical calculations was carried out to check their electron transportability. The natural transition orbital calculation helped in understanding the locally excited and charge transfer excited states. The low electron reorganization energies of these molecules indicated that these materials may have potential to be used in electron transport layers of optoelectronic devices, particularly in OLEDs. Moreover, the assembled networks have a relatively wide surface area and linked structures, which are advantageous for the conduction of carriers with poor electron recombination inside the ETL, and these may offer a straightforward channel for electron conduction to the emissive layer. Finally, the fabricated electron-only device indicated that the synthesized materials may be used as ETMs in the electron transport layer of optoelectronic devices.

5.
Chemistry ; 29(18): e202203282, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36546896

RESUMO

Considering the difficulties associated with the conventional 'trial and error' method for a complete analysis of a giant molecular space, we took the aid of computational pathway (DFT) in screening a large space search of 780 (12×13×5) molecules to search for a host for the blue emitter. The selection process was completed in three Tiers with the conditions of highest theoretical triplet energy (>2.81 eV), aligned HOMO/LUMO levels w.r.t blue dopant (FIrpic), and position of substituents to meet the optimal requirements as host materials. Tier 1 screened twelve different imidazole heterocycle derivatives as base space groups which resulted in the selection of 4,5-diphenyl-1H-imidazole. Tier 2 process converged the search to mCN-CZ having the highest triplet energy and appropriate HOMO/LUMO level relative to FIrpic and ETL. Further, the carbazole of mCN-CZ was replaced with different aromatic hydrocarbons to find the other best compound in terms of triplet energy and HOMO/LUMO. Tier 3 resulted in another promising candidate (mCN-FL) as possible host materials. The band alignment with guest predicted mCN-FL and mCN-CZ to have optimal device performances compared to CZ-CZ and the experimentally observed device performance was in accordance with virtual screening results when TAPC was utilized as the hole transporter. The device results of mCN-CZ and mCN-FL were better than the reference host TCTA. The obtained results thus proved that a virtual screening process will be a useful tool for synthetic chemists in designing task-specific materials.

6.
Org Biomol Chem ; 21(38): 7831-7840, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37728395

RESUMO

Intracellular RNA imaging with organic small molecular probes has been an intense topic, although the number of such reported dyes, particularly dyes with high quantum yields and long wavelength excitation/emission, is quite limited. The present work reports the design and synthesis of three cationic julolidine-azolium conjugates (OX-JLD, BTZ-JLD and SEZ-JLD) as turn-on fluorescent probes with appreciably high quantum yields and brightness upon interaction with RNA. A structure-efficiency relationship has been established for their potential for the interaction and imaging of intracellular RNA. Given their chemical structure, the free rotation between the donor and the acceptor gets restricted when the probes bind with RNA resulting in strong fluorescence emission towards a higher wavelength upon photoexcitation. A detailed investigation revealed that the photophysical properties and the optical responses of two probes, viz. BTZ-JLD and SEZ-JLD, towards RNA are very promising and qualify them to be suitable candidates for biological studies, particularly for cellular imaging applications. The probes allow imaging of intracellular RNA with prominent staining of nucleoli in live cells under a range of physiological conditions. The results of the cellular digest test established the appreciable RNA selectivity of BTZ-JLD and SEZ-JLD inside the cellular environment. Moreover, a comparison between the relative intensity profile of SEZ-JLD before and after the RNA-digestion test inside the cellular environment indicated that the interference of cellular viscosity in fluorescence enhancement is insignificant, and hence, SEZ-JLD can be used as a cell membrane permeable cationic molecular probe for deep-red imaging of intracellular RNA with a good degree of selectivity.

7.
Phys Chem Chem Phys ; 25(29): 19648-19659, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435981

RESUMO

The advancement in developing highly efficient hole transport materials for OLED devices has been a challenge over the past several years. For an efficient OLED device, there should be an efficient promotion of charge carriers from each electrode and effective confinement of triplet excitons in the emissive layer of the phosphorescent OLED (PhOLED). Thus, the development of stable and high triplet energy hole transport materials is in urgent demand for high-performing PhOLED devices. The present work demonstrates the development of two hetero-arylated pyridines as high triplet energy (2.74-2.92 eV) multifunctional hole transport materials to reduce the exciton quenching and to enhance the extent of charge carrier recombination in the emissive layer. In this regard, we report the design, synthesis, and theoretical modeling with electro-optical properties of two molecules, namely PrPzPy and MePzCzPy, with suitable HOMO/LUMO energy levels and high triplet energy, by incorporating phenothiazine as well as other donating units into a pyridine scaffold, and finally developing a hybrid phenothiazine-carbazole-pyridine based molecular architecture. The natural transition orbital (NTO) calculations were done to analyze the excited state sensation in these molecules. The long-range charge transfer characteristics between the higher singlet and triplet states were also analyzed. The reorganization energy of each molecule was calculated to examine their hole transportability. The theoretical calculations for PrPzPy and MePzCzPy revealed that these two molecular systems could be promising materials for the hole transport layer of OLED devices. As a proof of concept, a solution-processed hole-only device (HOD) of PrPzPy was fabricated. The increase in current density with an increase in operating voltage in the range of ∼3-10 V supported that the suitable HOMO energy of PrPzPy can facilitate the hole transportation from the hole injection layer (HIL) to the emissive layer (EML). These results indicated the promising hole transportability of the present molecular materials.

8.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770613

RESUMO

In this work, two new 1D Cd(II) coordination polymers (CPs), [Cd(L1)(NMF)2]n (1) and [Cd(L2)(DMF)(H2O)2]n·n(H2O) (2), have been synthesized, characterized and employed as catalysts for the microwave-assisted solvent-free Strecker-type cyanation of different acetals. Solvothermal reaction between the pro-ligand, 5-{(pyren-1-ylmethyl)amino}isophthalic acid (H2L1) or 5-{(anthracen-9-ylmethyl)amino}isophthalic acid (H2L2), and Cd(NO3)2.6H2O in the presence of NMF or DMF:THF solvent, produces the coordination polymer 1 or 2, respectively. These frameworks were characterized by single-crystal and powder X-ray diffraction analyses, ATR-FTIR, elemental and thermogravimetry analysis. Their structural analysis revealed that both CPs show one-dimensional structures, but CP 1 has a 1D double chain type structure whereas CP 2 is a simple one-dimensional network. In CP 1, the dinuclear {Cd2(COO)4} unit acts as a secondary building unit (SBU) and the assembly of dinuclear SBUs with deprotonated ligand (L12-) led to the formation of a 1D double chain framework. In contrast, no SBU was observed in CP 2. To test the catalytic effectiveness of these 1D compounds, the solvent-free Strecker-type cyanation reactions of different acetals in presence of trimethylsilyl cyanide (TMSCN) was studied with CPs 1 and 2 as heterogenous catalysts. CP 1 displays a higher activity (yield 95%) compared to CP 2 (yield 84%) after the same reaction time. This is accounted for by the strong hydrogen bonding packing network in CP 2 that hampers the accessibility of the metal centers, and the presence of the dinuclear Cd(II) SBU in CP 1 which can promote the catalytic process in comparison with the mononuclear Cd(II) center in CP 2. Moreover, the recyclability and heterogeneity of both CPs were tested, demonstrating that they can be recyclable for at least for four cycles without losing their structural integrity and catalytic activity.

9.
Inorg Chem ; 61(39): 15699-15710, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36123194

RESUMO

As the postsynthesis-processed metal-organic material-based catalysts for energy applications add additional cost to the whole process, the importance of developing synthesized usable pristine catalysts is quite evident. The present work reports a new Cu-based coordination polymer (Cu-CP) catalyst to be used in its pristine form for oxygen reduction reaction (ORR) application. The catalyst was characterized using single-crystal X-ray diffraction, field emission scanning electron microscopy, and X-ray photoemission spectroscopy. The Cu-CP exhibits admirable electrocatalytic ORR activity with an onset potential of 0.84 V versus RHE and a half wave potential of 0.69 V versus RHE. As revealed by the density functional theory-based computational mechanistic investigation of the electrocatalytic ORR process, the electrochemically reduced Cu(I) center binds to the molecular O2 through an exergonic process (ΔG = -6.8 kcal/mol) and generates the Cu(II)-O2•- superoxo intermediate. Such superoxo intermediates are frequently encountered in the catalytic cycle of the Cu-containing metalloenzymes in their O2 reduction reaction. This intermediate undergoes coupled proton and electron transfer processes to give OH- in an alkaline medium involving H2O2 as the intermediate. The electrocatalytic performance of Cu-CP remained stable even up to 3000 cycles. Overall, the newly developed Cu-CP-based electrocatalyst holds promising potential for efficient biomimetic ORR reactivity, which opens new possibilities toward the development of robust coordination polymer-based electrocatalysts.


Assuntos
Metaloproteínas , Polímeros , Biomimética , Peróxido de Hidrogênio , Metaloproteínas/metabolismo , Oxirredução , Oxigênio/química , Polímeros/metabolismo , Prótons
10.
J Phys Chem A ; 125(15): 3122-3134, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33829793

RESUMO

Electron transport in a single molecule resulting from the superposition of its vibronic states depends on the coupling strength with the metallic leads. However, dynamical coherence and Fermionic correlation in molecule-molecule and molecule-lead coupling necessitates a critical approach to treat the current and its noise level, especially in the presence of a variable external bias for temperature-dependent conduction. Primarily, this work is a generalization of the theoretical approach of the atomic dimers to incorporate the effect of vibrational modes in current and conductance characteristics. The variation of current and differential conductance due to the external bias reveals a vibrational Coulomb blockade structure corresponding to the functioning vibrational mode in the system. The numerical demonstration for a diverse class of molecules generically shows that electron-vibration interaction can quantitatively predict the nature of coherent electron transport and current noise. Secondly, an attempt has been made to illustrate the effect of magnitude of coherence-induced noise suppression of current as a signature of electron-vibration entanglement. Finally, temperature-dependent conductance of the molecular junction in dimer structure has been estimated along with the peak shifts due to the applied gate voltage.

11.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669746

RESUMO

The new coordination polymers (CPs) [Zn(µ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(µ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2-) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Assuntos
Aldeídos/química , Cianetos/química , Micro-Ondas , Polímeros/química , Pirenos/química , Compostos de Trimetilsilil/química , Catálise , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Polímeros/síntese química , Solventes , Termogravimetria
12.
Inorg Chem ; 59(22): 16301-16318, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33100004

RESUMO

The new 2D coordination polymers (CPs) [M(L)2(H2O)2]n [M = CoII (1) and NiII (2); L = 4-(pyridin-3-ylcarbamoyl)benzoate] were synthesized from pyridyl amide-functionalized benzoic acid (HL). They were characterized by elemental, Fourier transform infrared, thermogravimetric, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (XRD) structural analyses. Single-crystal XRD analysis revealed the presence of a 2D polymeric architecture, and topological analyses disclose a 2,4-connected binodal net. A thermochromic effect leads to the production of two new CPs, 1' and 2', by heating at ca. 220 °C, accompanied by a color change from orange to purple in the case of 1 and from blue to green in the case of 2. The transformation of 1 to 1' takes place through an intermediate (1a) with a different twist of the L- ligand, leading to the formation of a 1D polymeric architecture, as proven by single-crystal XRD analysis. The addition of water or keeping 1' or 2' in air for several days leads to regeneration of 1 or 2, respectively. The thermochromic-triggered structural transformations of 1 and 2 were further substantiated by PXRD and UV-vis ground-state diffuse-reflectance absorption studies. The supercapacitance ability of the CPs 1 and 2 and a Ni-Co composite (made from mixing the CPs 1 and 2) was investigated by electroanalytical techniques, such as cyclic voltammetry and electrochemical impedance spectroscopy. The CP 2 exhibits the highest specific capacity of 273.8 C g-1 at an applied current density of 1.5 A g-1. These newly developed CPs further act as electrocatalysts for the water-splitting reaction.

13.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517273

RESUMO

The mononuclear zinc(II) complex cis-[ZnL2(H2O)2] (1; L = 4-(pyridin-3-ylcarbamoyl)benzoate) was synthesized and characterized. By soaking crystals of 1 in a mixture of DMF-H2O solution containing a slight excess of Cu(NO3)2 × 3H2O a transmetalation reaction occurred affording the related copper(II) complex trans-[CuL2(H2O)2] (2). The structures of the compounds were authenticated by single crystal X-ray diffraction revealing, apart from a change in the isomerism, an alteration in the relative orientation of the chelating carboxylate groups and of the pyridine moieties. H-bond interactions stabilize both geometries and expand them into two-dimensional (2D) networks. The transmetalation was confirmed by SEM-EDS analysis. Moreover, the thermodynamic feasibility of the transmetalation is demonstrated by density-functional theory (DFT) studies. The catalytic activities of 1 and 2 for the oxidation of styrene and for the nitroaldol (Henry) C-C coupling reaction were investigated. The copper(II) compound 2 acts as heterogeneous catalyst for the microwave-assisted oxidation of styrene with aqueous hydrogen peroxide, yielding selectively (>99%) benzaldehyde up to 66% of conversion and with a turnover frequency (TOF) of 132 h-1. The zinc(II) complex 1 is the most active catalyst (up to 87% yield) towards the nitroaldol (Henry) coupling reaction between benzaldehyde and nitro-methane or -ethane to afford the corresponding ß-nitro alcohols. The reaction of benzaldehyde with nitroethane in the presence of 1 produced 2-nitro-1-phenylpropanol in the syn and the anti diastereoisomeric forms, with a considerable higher selectivity towards the former (66:34).


Assuntos
Amidas/química , Quelantes/química , Cobre/química , Compostos Heterocíclicos com 3 Anéis/química , Nitrocompostos/química , Estireno/química , Zinco/química , Catálise , Modelos Moleculares , Oxirredução
14.
Inorg Chem ; 56(22): 13962-13974, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29120177

RESUMO

Reaction of 2-hydroxyimino-4,4-dimethyl-3-oxo-pentanenitrile (common abbreviation HPiCO, pivaloyl-cyanoxime) with zinc sulfate in an aqueous solution results in the formation of the two new complexes: [Zn(PiCO){H(PiCO)2}(H2O)] (I) and tetranuclear Zn complex [Zn4(µ3-OH)2(PiCO)6 (H2O)4] (II). Both complexes were characterized by elemental analysis, IR- and UV-visible spectra, DSC/TGA studies, and X-ray analysis. In complex II, the PiCO- cyanoxime anion adopts three bidentate binding modes: O-monodentate, chelating (κ2), and bridging (η2) coordinations. Also, the ligand represents the mixture of two diasteromers (cis-anti and cis-syn) that form five- and six-membered chelate rings with Zn atoms and cocrystallize in one unit cell at population of 0.57-0.43. There are two crystallographically different Zn-centers in the ASU, and two µ3-bridging hydroxo-groups arrange via inversion center the formation of an elegant tetranuclear complex. Each Zn atom has a molecule of coordinated water and is in the distorted octahedral environment. Because of the structural flexibility and multidentate propensity of the pivaloyl-cyanoxime, complex II may act as a structural model of naturally occurring Zn-containing enzymes. Indeed, compound I exhibits an efficient catalytic performance for transesterification reaction of various esters in ethanol under mild reaction conditions. Therefore, obtained results allow assignment of observed activity as green catalysis.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38605636

RESUMO

In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd2(L1)2(4,4'-Bipy)2]n·4n(DMF) (1), [Cd2(L2)2(4,4'-Bipy)2]n·3n(DMF) (2), and [Cd(L3)(4,4'-Bipy)]n·2n(DMF) (3) [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4'-Bipy = 4,4'-bipyridine; and DMF = N,N'-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd2(COO)4(N)4] secondary building block unit. Moreover, MOFs 1 and 2 contain one-dimensional channels along the b-axis, whereas MOF 3 possesses a 1D channel along the a-axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO2 (up to 5.34 mmol/g) over N2 and CH4. The isosteric heat of adsorption (Qst) value for CO2 at zero loadings is in the range of 18-26 kJ mol-1. In order to understand the mechanism behind the better adsorption of CO2 by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO2 is stronger compared to those with N2 and CH4. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO2 and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF 1 demonstrate that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value (S = 34) decreases significantly for the CO2/N2 mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO2/CH4 (50:50) and CO2/N2 (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO2 in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO2. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO2 fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO2 pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.

16.
Acta Crystallogr C ; 69(Pt 3): 251-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23459349

RESUMO

The structure of 2,3,6,7,10,11-hexahydroxytriphenylene (hhtp) methanol monosolvate, C18H12O6·CH3OH, has triclinic symmetry (space group P-1). The compound has a three-dimensional layered network structure formed by intermolecular hydrogen bonding. Structure analysis with Hirshfeld surfaces is shown to be a sensitive method for comparing π-stacking effects in the five known solvates of hhtp. The title structure shows slightly weaker π-stacking than the dihydrate, but stronger π-stacking than the other three solvates.

17.
Dalton Trans ; 52(24): 8275-8283, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37254804

RESUMO

Multifunctional metal-organic frameworks with luminescence properties are promising materials for the detection and treatment of toxic pollutants in aqueous media. Herein, an adenine-based multifunctional Zn-MOF {[Zn3.5(AIPA)2(Ade)3(H2O)2]n using linkers adenine (Ade) and 5-aminoisophthalic acid (AIPA)} was prepared that could selectively detect particular classes of explosives and antibiotics, namely, nitrophenols, tetracyclines and nitrofurans. Moreover, the as-synthesized Zn-MOF displayed a remarkable efficiency for the treatment of antibiotics in water through adsorption and photocatalytic degradation. A subtle balance between photoinduced electron transfer (PET), resonance energy transfer (RET) and competitive excitation energy absorption enabled detection selectivity towards the pollutants. On the other hand, intermolecular interactions of free functional groups assisted the treatment process and thereby highlighted the crucial role of the linkers in furnishing multifunctional behavior without the need for any postsynthetic modifications.

18.
ACS Omega ; 8(45): 42290-42300, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024759

RESUMO

Three new zinc(II) complexes [Zn(H2L3)2(H2O)3] (Zn2), [Zn(H3L2a)(H2O)3]n (Zn3) (H3L2a = 2,4-diiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)isophthalate) and [Zn(HL4)(DMF)(H2O)]n (Zn4) were synthesized by the reaction of Zn(II) salts with 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl) isophthalic acid (H3L3), 2,4,6-triiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl) isophthalic acid (H5L2) (in the presence of NH2OH·HCl) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-2,4,6-triiodoisophthalic acid (H3L4), respectively. According to the X-ray structural analysis, the intramolecular resonance-assisted hydrogen bond ring remains intact, with N···O distances of 2.562(5) and 2.573(5) Å in Zn2, 2.603(6) Å in Zn3, and 2.563(8) Å in Zn4. In the crystal packing of Zn3, the cooperation of I···O and I···I types of halogen bonds between tectons leads to a one-dimensional supramolecular polymer, while I···O interactions aggregate 1D chains of coordination polymer Zn4. These new complexes (Zn2, Zn3, and Zn4) and known [Zn(H3L1)(H2O)2]n (Zn1) (H3L1 = 5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) hydrazineyl)isophthalate), {[Zn(H3L1)(H2O)3]·3H2O}n (Zn5), [Cd(H3L1)(H2O)2]n (Cd1), {[Cd(HL3)(H2O)2(DMF)]·H2O}n (Cd2), [Cd(H3L3)]n (Cd-3), {[Cd2(µ-H2O)2(µ-H2L4)2(H2L4)2]·2H2O}n (Cd4), and {[Cd(H3L1)(H2O)3]·4H2O}n (Cd5) were tested as catalysts in the cycloaddition reaction of CO2 with epoxides in the presence of tetrabutylammonium halides as the cocatalyst. The halogen-bonded catalyst Zn4 is the most efficient one in the presence of tetrabutylammonium bromide by affording a high yield (85-99%) of cyclic carbonates under solvent-free conditions after 48 h at 40 bar and 80 °C.

19.
Chem Asian J ; 17(7): e202101281, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129298

RESUMO

We present fluorogenic cationic organo chalcogens that are highly selective to RNA. We have demonstrated that the conformational dynamics and subsequently the optical properties of these dyes can be controlled to facilitate efficient bioimaging. We report the application of organoselenium and organosulfur-based cell-permeable red-emissive probes bearing a favorable cyclic sidearm for selective and high contrast imaging of cell nucleoli. The probes exhibit high quantum yield upon interacting with RNA in an aqueous solution. An in-depth multiscale simulation study reveals that the prominent rotational freezing of the electron-donating sidearm of the probes in the microenvironment of RNA helps in attaining more planar conformation when compared to DNA. It exerts a greater extent of intramolecular charge transfer and hence leads to enhanced fluorescence emission. A systematic structure-interaction relationship study highlighted the impact of heavy-chalcogens toward the improved emissive properties of the probes.


Assuntos
Sondas Moleculares , Selênio , Nucléolo Celular , Fluorescência , Corantes Fluorescentes , Imagem Molecular
20.
Dalton Trans ; 51(3): 1019-1031, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34935834

RESUMO

A solvothermal reaction of Cd(II) with the dicarboxyl-functionalized arylhydrazone pro-ligands, 5-(2-(2,4,6-trioxotetrahydro-pyrimidin-5(2H)-ylidene)hydrazineyl)isophthalic acid (H5L1) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)isophthalic acid (H3L2), or their halogen bond donor centre(s) decorated analogs 2,4,6-triiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)isophthalic acid (H5L3) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-2,4,6-triiodoisophthalic acid (H3L4), leads to the formation of known [Cd(H3L1)(H2O)2]n (1) and new {[Cd(HL2)(H2O)2(DMF)]·H2O}n (2), [Cd(H3L3)]n (3) and {[Cd2(µ-H2O)2(µ-H2L4)2(H2L4)2]·2H2O}n (4) coordination compounds, respectively. The aggregation of mononuclear units via Cd-OC and Cd-OH2 coordination and CAr-I⋯I types of intramolecular halogen bonds lead to a dinuclear tecton 4. Both CAr-I⋯O and CAr-I⋯I types of intermolecular halogen bonds play a fundamental role in the supramolecular architectures of the obtained metal-organic frameworks 3 and 4. Theoretical (DFT) calculations confirmed the presence of the CAr-I⋯O and CAr-I⋯I halogen bonds in 3 and 4 and allowed their characterisation. The formation of intermolecular noncovalent interactions between the attached iodine substituents to the hydrazone ligands and polar solvent (water or methanol) molecules promoted, at least in part, the solubility of the corresponding complexes (3 and 4), which act as homogeneous catalyst precursors in the Henry reaction between aldehydes and nitroethane. The corresponding ß-nitroalkanol products were obtained in good yields (66-79%) and with good diastereoselectivity (threo/erythro ca. 72 : 28) in water at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA