RESUMO
Neurological dysfunction following viral infection varies among individuals, largely due to differences in their genetic backgrounds. Gait patterns, which can be evaluated using measures of coordination, balance, posture, muscle function, step-to-step variability, and other factors, are also influenced by genetic background. Accordingly, to some extent gait can be characteristic of an individual, even prior to changes in neurological function. Because neuromuscular aspects of gait are under a certain degree of genetic control, the hypothesis tested was that gait parameters could be predictive of neuromuscular dysfunction following viral infection. The Collaborative Cross (CC) mouse resource was utilized to model genetically diverse populations and the DigiGait treadmill system used to provide quantitative and objective measurements of 131 gait parameters in 142 mice from 23 CC and SJL/J strains. DigiGait measurements were taken prior to infection with the neurotropic virus Theiler's Murine Encephalomyelitis Virus (TMEV). Neurological phenotypes were recorded over 90 days post-infection (d.p.i.), and the cumulative frequency of the observation of these phenotypes was statistically associated with discrete baseline DigiGait measurements. These associations represented spatial and postural aspects of gait influenced by the 90 d.p.i. phenotype score. Furthermore, associations were found between these gait parameters with sex and outcomes considered to show resistance, resilience, or susceptibility to severe neurological symptoms after long-term infection. For example, higher pre-infection measurement values for the Paw Drag parameter corresponded with greater disease severity at 90 d.p.i. Quantitative trait loci significantly associated with these DigiGait parameters revealed potential relationships between 28 differentially expressed genes (DEGs) and different aspects of gait influenced by viral infection. Thus, these potential candidate genes and genetic variations may be predictive of long-term neurological dysfunction. Overall, these findings demonstrate the predictive/prognostic value of quantitative and objective pre-infection DigiGait measurements for viral-induced neuromuscular dysfunction.
Assuntos
Theilovirus , Viroses , Camundongos , Animais , Viroses/genética , Camundongos Endogâmicos , Locos de Características Quantitativas , MarchaRESUMO
Inter-species differences in toxicodynamics are often a critical source of uncertainty in safety evaluations and typically dealt with using default adjustment factors. In vitro studies that use cells from different species demonstrated some success for estimating the relationships between life span and/or body weight and sensitivity to cytotoxicity; however, no apparent investigation evaluated the utility of these models for risk assessment. It was hypothesized that an in vitro model using dermal fibroblasts derived from diverse species and individuals might be utilized to inform the extent of inter-species and inter-individual variability in toxicodynamics. To test this hypothesis and characterize both inter-species and inter-individual variability in cytotoxicity, concentration-response cytotoxicity screening of 40 chemicals in primary dermal fibroblasts from 68 individuals of 54 diverse species was conducted. Chemicals examined included drugs, environmental pollutants, and food/flavor/fragrance agents; most of these were previously assessed either in vivo or in vitro for inter-species or inter-individual variation. Species included humans, the typical preclinical species and representatives from other orders of mammals and birds. Data demonstrated that both inter-species and inter-individual components of variability contribute to the observed differences in sensitivity to cell death. Further, it was found that the magnitude of the observed inter-species and inter-individual differences was chemical-dependent. This study contributes to the paradigm shift in risk assessment from reliance on in vivo toxicity testing to higher-throughput in vitro or alternative approaches, extending the strategy to replace use of default adjustment factors with experimental characterization of toxicodynamic inter-individual variability and to also address toxicodynamic inter-species variability.
Assuntos
Modelos Biológicos , Testes de Toxicidade/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Derme/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Cinética , Reprodutibilidade dos Testes , Medição de Risco , Especificidade da EspécieRESUMO
The enzyme endoglucanase is responsible for the depolymerization of cellulose. This study focuses on characterization and purification of endoglucanase from Rhizopus oryzae MTCC 9642 through a simple size exclusion method and its effective application as an antibiofilm agent. Extracellular ß-1,4-endoglucanase, an enzyme that catalyzes the hydrolysis of carboxymethyl cellulose, was found to be synthesized by Rhizopus oryzae MTCC 9642. The enzyme was purified up to homogeneity simply by size exclusion process through ultrafiltration and gel chromatography. The molecular weight of purified enzyme protein was estimated to be 39.8 kDa and it showed the highest substrate affinity towards carboxymethyl-cellulose with Km and Vmax values of 0.833 mg ml-1 and of 0.33 mmol glucose min-1 mg-1protein, respectively. The purified enzyme exhibited optimal activity at pH 6 with a broad stability range of pH 3-8. The most preferred temperature was 35 °C and 50% of activity could be retained after the thermal exposure at 40 °C for 25 min. The purified enzyme protein was inactivated by Cu2+, while the activity could be enhanced by the addition of exogenous thiols. Since biofilm is a challenge for health sector, with the aim of eradicating the biofilm, the purified endoglucanase was used to remove biofilm produced by two nosocomial bacteria. As predicted by in silico molecular docking interaction, the purified enzyme could effectively degrade biofilm architecture of bacterial strains S. aureus and P. aeruginosa by 76.52 ± 6.52% and 61.67 ± 8.76%, respectively. The properties of purified enzyme protein, as elucidated by in vitro and in silico characterization, may be favourable for its commercial applications as a potent antibiofilm agent.
Assuntos
Celulase , Rhizopus oryzae , Celulase/metabolismo , Simulação de Acoplamento Molecular , Staphylococcus aureus , Temperatura , Celulose/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Especificidade por Substrato , Rhizopus/metabolismoRESUMO
Rhizopus oryzae PR7 MTCC 9642 was a dimorphic fungus that showed a regular 90 days cycle of filament (mycelium) to pellet (yeast) transformation through a distinct bottom dwelling intermediate state and the pellets never revert back to filamentous form. Apart from the normal cycle, high temperature (37°C and above) and extreme pH also induced the yeast formation. Among the ions tested, calcium and chloride ions were found to restore the filamentous morphology, even in extreme pH and temperature. Cysteine HCl also played noteworthy role in maintaining mycelial growth even at adverse condition. Immobilized spores showed the appearance of intermediate form instead of typical yeast form even at high temperature. The strain could produce a number of extracellular hydrolytic enzymes like cellulolytic, xylanolytic, pectinolytic and amylolytic enzymes. The pellet and mycelial forms were found to be a better producer of cellulase-lignocellulase enzymes and amylolytic enzymes respectively, which might be correlated with their infectivity. Increase in inoculum size, agitation during cultivation, change in carbon and nitrogen source failed to induce mycelial growth in extreme conditions, which might be explained as irreversible change of configuration of protein responsible for mycelial development.
RESUMO
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1ß, and MIP-1ß for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Assuntos
Theilovirus , Viroses , Doença Aguda , Animais , Citocinas , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Lymphovascular invasion (LVI) is an important prognostic indicator of lymph node metastasis and disease aggressiveness but clear molecular mechanisms mediating this in head and neck cancers (HNSC) remain undefined. To identify important microRNAs (miRNAs) in HNSC that associate with and are also predictive of increased risk of LVI, we used a combination of clustering algorithms, multiple regression analyses and machine learning approaches and analyzed miRNA expression profiles in the TCGA HNSC database. As the first step, we identified miRNAs with increased association with LVI as a binary variable. In order to determine whether the identified miRNAs would show functional clusters that are also indicative of increased risk for LVI, we carried out unsupervised as well as supervised clustering. Our results identified distinct clusters of miRNAs that are predictive of increased LVI. We further refined these findings using a Random forest approach, and miR-203a-3p, mir-10a-5p, and miR-194-5p to be most strongly associated with LVI. Pathway enrichment analysis showed these miRNAs targeted genes involved in Hippo signaling and fatty acid oxidation pathways that are mediators of lymph node metastasis. Specific association was also identified between the miRNAs associated with LVI and expression of several lymphangiogenic genes that could be critical for determination of therapeutic strategies.
RESUMO
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
RESUMO
BACKGROUND: Xenobiotic metabolism is complex, and accounting for bioactivation and detoxification processes of chemicals remains among the most challenging aspects for decision making with in vitro new approach methods data. OBJECTIVES: Considering the physiological relevance of human organotypic culture models and their utility for high-throughput screening, we hypothesized that multidimensional chemical-biological profiling of chemicals and their major metabolites is a sensible alternative for the toxicological characterization of parent molecules vs. metabolites in vitro. METHODS: In this study, we tested 25 polychlorinated biphenyls (PCBs) [PCB 3, 11, 52, 126, 136, and 153 and their relevant metabolites (hydroxylated, methoxylated, sulfated, and quinone)] in concentration-response (10 nM-100µM) for effects in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) (iPSC-derived and HUVECs). Functional phenotypic end points included effects on beating parameters and intracellular Ca2+ flux in CMs and inhibition of tubulogenesis in ECs. High-content imaging was used to evaluate cytotoxicity, mitochondrial integrity, and oxidative stress. RESULTS: Data integration of a total of 19 physicochemical descriptors and 36 in vitro phenotypes revealed that chlorination status and metabolite class are strong predictors of the in vitro cardiovascular effects of PCBs. Oxidation of PCBs, especially to di-hydroxylated and quinone metabolites, was associated with the most pronounced effects, whereas sulfation and methoxylation of PCBs resulted in diminished bioactivity. DISCUSSION: Risk characterization analysis showed that although in vitro derived effective concentrations exceeded the levels measured in the general population, risks cannot be ruled out due to the potential for population variability in susceptibility and the need to fill data gaps using read-across approaches. This study demonstrated a strategy for how in vitro data can be used to characterize human health risks from PCBs and their metabolites. https://doi.org/10.1289/EHP7030.
Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Células Endoteliais , Poluentes Ambientais , Humanos , Células-Tronco Pluripotentes InduzidasRESUMO
Our previous study documented a reproductive function for the male-transmitted mitochondrial DNA (mtDNA)-encoded cytochrome c oxidase subunit II (MCOX2) protein in a unionoid bivalve. Here, immunoblotting, immunohistochemistry and immunoelectron microscopy analyses demonstrate that the female-transmitted protein (FCOX2) is: (i) expressed in both male and female gonads; (ii) maximally expressed in ovaries just prior to the time of the annual fertilization event; (iii) displayed in the cytoplasm and more strongly in the plasma membrane (microvilli), vitelline matrix and vitelline envelope of mature ovarian eggs; and (iv) strongly localized to the vitelline matrix of some eggs just prior to fertilization. These findings represent evidence for the extra-mitochondrial localization of an mtDNA-encoded gene product and are consistent with multifunctionality for FCOX2 in eggs.
Assuntos
DNA Mitocondrial/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Reprodução/fisiologia , Unionidae/enzimologia , Unionidae/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Gônadas/metabolismo , Gônadas/ultraestrutura , Immunoblotting , Imuno-Histoquímica , Masculino , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Óvulo/metabolismo , Óvulo/ultraestrutura , Reprodução/genética , Estações do Ano , Unionidae/ultraestruturaRESUMO
The production cost of ß-glucosidase and endoglucanase could be reduced by using water hyacinth, an aquatic weed, as the sole carbon source and using cost-efficient fermentation strategies like solid-state fermentation (SSF). In the present study, the effect of different production conditions on the yield of ß-glucosidase and endoglucanase by Rhizopus oryzae MTCC 9642 from water hyacinth was investigated systematically using response surface methodology. A Central composite experimental design was applied to optimize the impact of three variables, namely, substrate concentration, pH, and temperature, on enzyme production. The optimal level of each parameter for maximum enzyme production by the fungus was determined. Highest activity of endoglucanase of 495 U/mL was achieved at a substrate concentration of 1.23%, pH 7.29, and temperature 29.93°C whereas maximum ß-glucosidase activity of 137.32 U/ml was achieved at a substrate concentration of 1.25%, pH 6.66, and temperature 32.09°C. There was a direct correlation between the levels of enzymatic activities and the substrate concentration of water hyacinth as carbon source.
RESUMO
Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (O(H)) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (O(L)) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.