Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831053

RESUMO

Ensembles of particles governed by quantum mechanical laws exhibit intriguing emergent behaviour. Atomic quantum gases1,2, liquid helium3,4 and electrons in quantum materials5-7 all exhibit distinct properties because of their composition and interactions. Quantum degenerate samples of ultracold dipolar molecules promise the realization of new phases of matter and new avenues for quantum simulation8 and quantum computation9. However, rapid losses10, even when reduced through collisional shielding techniques11-13, have so far prevented evaporative cooling to a Bose-Einstein condensate (BEC). Here we report on the realization of a BEC of dipolar molecules. By strongly suppressing two- and three-body losses via enhanced collisional shielding, we evaporatively cool sodium-caesium molecules to quantum degeneracy and cross the phase transition to a BEC. The BEC reveals itself by a bimodal distribution when the phase-space density exceeds 1. BECs with a condensate fraction of 60(10)% and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 s. This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far, promising the creation of exotic dipolar droplets14, self-organized crystal phases15 and dipolar spin liquids in optical lattices16.

2.
Nature ; 614(7946): 59-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725996

RESUMO

Scattering resonances are an essential tool for controlling the interactions of ultracold atoms and molecules. However, conventional Feshbach scattering resonances1, which have been extensively studied in various platforms1-7, are not expected to exist in most ultracold polar molecules because of the fast loss that occurs when two molecules approach at a close distance8-10. Here we demonstrate a new type of scattering resonance that is universal for a wide range of polar molecules. The so-called field-linked resonances11-14 occur in the scattering of microwave-dressed molecules because of stable macroscopic tetramer states in the intermolecular potential. We identify two resonances between ultracold ground-state sodium-potassium molecules and use the microwave frequencies and polarizations to tune the inelastic collision rate by three orders of magnitude, from the unitary limit to well below the universal regime. The field-linked resonance provides a tuning knob to independently control the elastic contact interaction and the dipole-dipole interaction, which we observe as a modification in the thermalization rate. Our result provides a general strategy for resonant scattering between ultracold polar molecules, which paves the way for realizing dipolar superfluids15 and molecular supersolids16, as well as assembling ultracold polyatomic molecules.

3.
Nature ; 607(7920): 677-681, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896646

RESUMO

Ultracold polar molecules offer strong electric dipole moments and rich internal structure, which makes them ideal building blocks to explore exotic quantum matter1-9, implement quantum information schemes10-12 and test the fundamental symmetries of nature13. Realizing their full potential requires cooling interacting molecular gases deeply into the quantum-degenerate regime. However, the intrinsically unstable collisions between molecules at short range have so far prevented direct cooling through elastic collisions to quantum degeneracy in three dimensions. Here we demonstrate evaporative cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding. The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave. The microwave dressing induces strong tunable dipolar interactions between the molecules, leading to high elastic collision rates that can exceed the inelastic ones by at least a factor of 460. This large elastic-to-inelastic collision ratio allows us to cool the molecular gas to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature. Such cold and dense samples of polar molecules open the path to the exploration of many-body phenomena with strong dipolar interactions.

4.
Phys Rev Lett ; 132(18): 183401, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759201

RESUMO

We propose to repeatedly load laser-cooled molecules into optical tweezers, and transfer them to storage states that are rotationally excited by two additional quanta. Collisional loss of molecules in these storage states is suppressed, and a dipolar blockade prevents the accumulation of more than one molecule. Applying three cycles loads tweezers with single molecules at an 80% success rate, limited by residual collisional loss. This improved loading efficiency reduces the time needed for rearrangement of tweezer arrays, which would otherwise limit the scalability of neutral molecule quantum computers.

5.
J Phys Chem A ; 127(9): 2194-2211, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36825902

RESUMO

Scattering resonances due to the dipole-dipole interaction between ultracold molecules, induced by static or microwave fields, are studied theoretically. We develop a method for coupled-channel calculations that can efficiently impose many short-range boundary conditions, defined by a short-range phase shift and loss probability as in quantum defect theory. We study how resonances appear as the short-range loss probability is lowered below the universal unit probability. This may become realizable for nonreactive ultracold molecules in blue-detuned box potentials.

6.
Phys Rev Lett ; 129(24): 243401, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563246

RESUMO

Ultracold molecules undergo "sticky collisions" that result in loss even for chemically nonreactive molecules. Sticking times can be enhanced by orders of magnitude by interactions that lead to nonconservation of nuclear spin or total angular momentum. We present a quantitative theory of the required strength of such symmetry-breaking interactions based on classical simulation of collision complexes. We find static electric fields as small as 10 V/cm can lead to nonconservation of angular momentum, while we find nuclear spin is conserved during collisions. We also compute loss of collision complexes due to spontaneous emission and absorption of black-body radiation, which are found to be slow.

7.
J Chem Phys ; 156(21): 214304, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676127

RESUMO

We present a joint experimental and theoretical study of rotationally inelastic collisions between NO (X2Π1/2, ν = 0, j = 1/2, f) radicals and CO (X1Σ+, ν = 0, j = 0) molecules at a collision energy of 220 cm-1. State-to-state scattering images for excitation of NO radicals into various final states were measured with high resolution by combining the Stark deceleration and velocity map imaging techniques. The high image resolution afforded the observation of correlated rotational excitations of NO-CO pairs, which revealed a number of striking scattering phenomena. The so-called "parity-pair" transitions in NO are found to have similar differential cross sections, independent of the concurrent excitation of CO, extending this well-known effect for collisions between NO and rare gas atoms into the realm of bimolecular collisions. Forward scattering is found for collisions that induce a large amount of rotational energy transfer (in either NO, CO, or both), which require low impact parameters to induce sufficient energy transfer. This observation is interpreted in terms of the recently discovered hard collision glory scattering mechanism, which predicts the forward bending of initially backward receding trajectories if the energy uptake in the collision is substantial in relation to the collision energy. The experimental results are in good agreement with the predictions from coupled-channels quantum scattering calculations based on an ab initio NO-CO potential energy surface.

8.
Phys Rev Lett ; 125(6): 063401, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845680

RESUMO

We demonstrate microwave dressing on ultracold, fermionic ^{23}Na^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding 3 times the s-wave unitarity limit. The origin of these interactions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channel calculations that agree well with the experimentally observed collision rates. The resonant microwave-induced collisions found here enable controlled, strong interactions between molecules, of immediate use for experiments in optical lattices.

9.
Phys Chem Chem Phys ; 22(27): 15081-15104, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32458891

RESUMO

Resonance states are characterized by an energy that is above the lowest dissociation threshold of the potential energy hypersurface of the system and thus resonances have finite lifetimes. All molecules possess a large number of long- and short-lived resonance (quasibound) states. A considerable number of rotational-vibrational resonance states are accessible not only via quantum-chemical computations but also by spectroscopic and scattering experiments. In a number of chemical applications, most prominently in spectroscopy and reaction dynamics, consideration of rotational-vibrational resonance states is becoming more and more common. There are different first-principles techniques to compute and rationalize rotational-vibrational resonance states: one can perform scattering calculations or one can arrive at rovibrational resonances using variational or variational-like techniques based on methods developed for determining bound eigenstates. The latter approaches can be based either on the Hermitian (L2, square integrable) or non-Hermitian (non-L2) formalisms of quantum mechanics. This Perspective reviews the basic concepts related to and the relevance of shape and Feshbach-type rotational-vibrational resonance states, discusses theoretical methods and computational tools allowing their efficient determination, and shows numerical examples from the authors' previous studies on the identification and characterization of rotational-vibrational resonances of polyatomic molecular systems.

10.
Phys Rev Lett ; 123(12): 123402, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633957

RESUMO

The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses.

11.
J Chem Phys ; 150(6): 064106, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30770001

RESUMO

Constructing accurate global potential energy surfaces (PESs) describing chemically reactive molecule-molecule collisions of alkali metal dimers presents a major challenge. To be suitable for quantum scattering calculations, such PESs must represent accurately three- and four-body interactions, describe conical intersections, and have a proper asymptotic form at the long range. Here, we demonstrate that such global potentials can be obtained by Gaussian Process (GP) regression merged with the analytic asymptotic expansions at the long range. We propose an efficient sampling technique, which allows us to construct an accurate global PES accounting for different chemical arrangements with <2500 ab initio calculations. We apply this method to (NaK)2 and obtain the first global PES for a system of four alkali metal atoms. The resulting surface exhibits a complex landscape including a pair and a quartet of symmetrically equivalent local minima and a seam of conical intersections. The dissociation energy found from our ab initio calculations is 4534 cm-1. This result is reproduced by the GP models with an error of less than 3%. The GP models of the PES allow us to analyze the features of the global PES, representative of general alkali metal four-atom interactions. Understanding these interactions is of key importance in the field of ultracold chemistry.

12.
Phys Rev Lett ; 121(16): 163401, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387668

RESUMO

We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10^{-14} cm^{3} s^{-1}. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.073201], and do not require cancellation of the long-range dipole-dipole interaction that is vital to many applications.

13.
Phys Chem Chem Phys ; 20(18): 12444-12453, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697730

RESUMO

We present a combined experimental and theoretical study of state-to-state inelastic scattering of NO(X2Π1/2, j = 1/2f) with O2(X3Σg-) molecules at a collision energy of 480 cm-1, focusing in particular on the observation and interpretation of correlated excitations in both NO and O2. Various final states of the NO radical, in both spin-orbit manifolds, were measured with high resolution using a crossed molecular beam apparatus which employs a combination of Stark deceleration and velocity map imaging. Velocity map imaging directly measures both the angular distribution and the radial velocity distribution of the scattered NO molecules, which probes the kinetic energy uptake or release and hence correlated excitations of NO-O2 pairs. Simultaneous excitations of NO and O2 were resolved for all studied final states of NO. In all cases, the experimental results excellently agree with the results of simulations based on quantum scattering calculations. Trends are discussed by analyzing the scattering wave functions from the calculations.

14.
J Chem Phys ; 149(8): 084306, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193486

RESUMO

Colliding molecules behave fundamentally differently at high and low collision energies. At high energies, a collision can be described to a large extent using classical mechanics, and the scattering process can be compared to a billiard-ball-like collision. At low collision energies, the wave character of the collision partners dominates, and only quantum mechanics can predict the outcome of an encounter. It is, however, not so clear how these limits evolve into each other as a function of the collision energy. Here, we investigate and visualize this evolution using a special feature of the differential cross sections for inelastic collisions between NO radicals and He atoms. The so-called "parity-pair" transitions have similar differential cross sections at high collision energies, whereas their cross sections are significantly different in the quantum regime at low energies. These transitions can be used as a probe for the quantum nature of the collision process. The similarity of the parity-pair differential cross sections at high energies could be theoretically explained if the first-order Born approximation were applicable. We found, however, that the anisotropy of the NO-He interaction potential is too strong for the first-order Born approximation to be valid, so higher-order perturbations must be taken into account.

15.
J Phys Chem A ; 121(40): 7446-7454, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28910536

RESUMO

We present state-to-state differential cross sections for collisions of NO molecules (X2Π1/2, j = 1/2f) with para-H2 and ortho-D2 molecules, at a collision energy of 510 and 450 cm-1, respectively. The angular scattering distributions for various final states of the NO radical are measured with high resolution using a crossed molecular beam apparatus that employs the combination of Stark deceleration and velocity map imaging. Rotational rainbows as well as diffraction oscillations are fully resolved in the scattering images. The observed angular scattering distributions are in excellent agreement with the cross sections obtained from quantum close-coupling scattering calculations based on recently computed NO-H2 potential energy surfaces, except for excitation of NO into the j = 7/2f channel. For this particular inelastic channel, a significant discrepancy with theory is observed, despite various additional measurements and calculations, at present, not understood.

16.
J Chem Phys ; 147(8): 084306, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863529

RESUMO

We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O2-O2, relevant for the theoretical description of collision-induced absorption in the forbidden X3Σg- → a1Δg and X3Σg- → b1Σg+ bands at 7883 cm-1 and 13 122 cm-1, respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O2-O2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

17.
J Chem Phys ; 147(8): 084307, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863543

RESUMO

We derive the theory of collision-induced absorption for electronic transitions in the approximation of an isotropic interaction potential. We apply this theory to the spin-forbidden X3Σg-→a1Δg and X3Σg-→b1Σg+ transitions in O2-O2, which are relevant for calibration in atmospheric studies. We consider two mechanisms for breaking the spin symmetry, either by the intermolecular exchange interaction between paramagnetic collision partners or by the intramolecular spin-orbit coupling. The calculations for the exchange-based mechanism employ the diabatic potential energy surfaces and transition dipole moment surfaces reported in Paper I [T. Karman et al., J. Chem. Phys. 147, 084306 (2017)]. We show that the line shape of the theoretical absorption spectra is insensitive to the large uncertainty in the electronic transition dipole moment surfaces. We also perform calculations using a simple model of the alternative mechanism involving intramolecular spin-orbit coupling, which leads to absorption intensities which are well below the experimental results. The relative intensity of this spin-orbit-based mechanism may impact the relative contribution to the absorption by collisions with diamagnetic collision partners, such as the atmospherically relevant N2 molecule. We furthermore show that both the line shape and temperature dependence are signatures of the underlying transition mechanism.

18.
J Chem Phys ; 147(1): 013918, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688409

RESUMO

We present state-to-state differential cross sections for collisions of NO molecules (X2Π1/2,j=1/2,f) with He atoms and ortho-D2 (j = 0) molecules as a function of collision energy. A high angular resolution obtained using the combination of Stark deceleration and velocity map imaging allows for the observation of diffraction oscillations in the angular scattering distributions. Differences in the differential cross sections and, in particular, differences in the angular spacing between individual diffraction peaks are observed. Since the masses of D2 and He are almost equal and since D2(j = 0) may be considered as a pseudo-atom, these differences directly reflect the larger size of D2 as compared to He. The observations are in excellent agreement with the cross sections obtained from quantum close-coupling scattering calculations based on accurate ab initio NO-He and NO-D2 potential energy surfaces. For the latter, we calculated a new NO-D2 potential energy surface.

19.
J Chem Phys ; 144(12): 121101, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036418

RESUMO

We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated for O2 - O2 in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.

20.
J Chem Phys ; 142(8): 084305, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25725729

RESUMO

We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA