Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(8): 3679-3695, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794722

RESUMO

In Bacteria, nucleoid structuring proteins govern nucleoid dynamics and regulate transcription. In Shigella spp., at ≤30°C, the histone-like nucleoid structuring protein (H-NS) transcriptionally silences many genes on the large virulence plasmid. Upon a switch to 37°C, VirB, a DNA binding protein and key transcriptional regulator of Shigella virulence, is produced. VirB functions to counter H-NS-mediated silencing in a process called transcriptional anti-silencing. Here, we show that VirB mediates a loss of negative DNA supercoils from our plasmid-borne, VirB-regulated PicsP-lacZ reporter in vivo. The changes are not caused by a VirB-dependent increase in transcription, nor do they require the presence of H-NS. Instead, the VirB-dependent change in DNA supercoiling requires the interaction of VirB with its DNA binding site, a critical first step in VirB-dependent gene regulation. Using two complementary approaches, we show that VirB:DNA interactions in vitro introduce positive supercoils in plasmid DNA. Subsequently, by exploiting transcription-coupled DNA supercoiling, we reveal that a localized loss of negative supercoils is sufficient to alleviate H-NS-mediated transcriptional silencing independently of VirB. Together, our findings provide novel insight into VirB, a central regulator of Shigella virulence and, more broadly, a molecular mechanism that offsets H-NS-dependent silencing of transcription in bacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica , Shigella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas , Shigella/genética , Shigella/metabolismo , Transcrição Gênica , Fatores de Virulência/genética , Inativação Gênica
2.
J Bacteriol ; 204(7): e0013722, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35703565

RESUMO

Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.


Assuntos
Regulação Bacteriana da Expressão Gênica , Shigella flexneri , Proteínas de Bactérias/metabolismo , Citarabina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retroalimentação , Shigella flexneri/genética , Shigella flexneri/metabolismo , Transcrição Gênica , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Methods Mol Biol ; 2819: 421-441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028517

RESUMO

Agarose gel electrophoresis in the presence of chloroquine (an intercalating agent) can be used to resolve and characterize the population of topoisomers present in supercoiled plasmid DNA. Here, we describe how chloroquine gel electrophoresis can capture changes in the topoisomer distribution of plasmid DNA that bears a recognition site for a given protein, if that plasmid is isolated from cells producing the protein of interest. We also describe two complementary in vitro assays, which can be used to capture transient changes in DNA supercoiling caused when the purified protein of interest engages its recognition site. These are the topoisomerase I-mediated relaxation assay (TMRA) and the ligase-mediated supercoiling assay (LMSA). Together, these in vivo and in vitro methods allow the capture and measurement of changes in DNA topology that are triggered by DNA-binding proteins, especially those that multimerize on or spread along DNA.


Assuntos
DNA Topoisomerases Tipo I , DNA Super-Helicoidal , Proteínas de Ligação a DNA , Plasmídeos , Proteínas de Ligação a DNA/metabolismo , Plasmídeos/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/metabolismo , Eletroforese em Gel de Ágar/métodos , Cloroquina/farmacologia , DNA/metabolismo , DNA/genética , Conformação de Ácido Nucleico
4.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711906

RESUMO

In Bacteria, nucleoid structuring proteins govern nucleoid dynamics and regulate transcription. In Shigella spp ., at ≤ 30 °C, the histone-like nucleoid structuring protein (H-NS) transcriptionally silences many genes on the large virulence plasmid. Upon a switch to 37 °C, VirB, a DNA binding protein and key transcriptional regulator of Shigella virulence, is produced. VirB functions to counter H-NS-mediated silencing in a process called transcriptional anti-silencing. Here, we show that VirB mediates a loss of negative DNA supercoils from our plasmid-borne, VirB-regulated PicsP-lacZ reporter, in vivo . The changes are not caused by a VirB-dependent increase in transcription, nor do they require the presence of H-NS. Instead, the VirB-dependent change in DNA supercoiling requires the interaction of VirB with its DNA binding site, a critical first step in VirB-dependent gene regulation. Using two complementary approaches, we show that VirB:DNA interactions in vitro introduce positive supercoils in plasmid DNA. Subsequently, by exploiting transcription-coupled DNA supercoiling, we reveal that a localized loss of negative supercoils is sufficient to alleviate H-NS-mediated transcriptional silencing, independently of VirB. Together, our findings provide novel insight into VirB, a central regulator of Shigella virulence and more broadly, a molecular mechanism that offsets H-NS-dependent silencing of transcription in bacteria.

5.
mBio ; 14(5): e0151923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728345

RESUMO

IMPORTANCE: Shigella species cause bacillary dysentery, the second leading cause of diarrheal deaths worldwide. There is a pressing need to identify novel molecular drug targets. Shigella virulence phenotypes are controlled by the transcriptional regulator, VirB. We show that VirB belongs to a fast-evolving, plasmid-borne clade of the ParB superfamily, which has diverged from versions with a distinct cellular role-DNA partitioning. We report that, like classic members of the ParB family, VirB binds a highly unusual ligand, CTP. Mutants predicted to be defective in CTP binding are compromised in a variety of virulence attributes controlled by VirB, likely because these mutants cannot engage DNA. This study (i) reveals that VirB binds CTP, (ii) provides a link between VirB-CTP interactions and Shigella virulence phenotypes, (iii) provides new insight into VirB-CTP-DNA interactions, and (iv) broadens our understanding of the ParB superfamily, a group of bacterial proteins that play critical roles in many bacteria.


Assuntos
Proteínas de Ligação a DNA , Shigella , Virulência/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ligantes , Shigella flexneri , Shigella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA