Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 25(6)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235805

RESUMO

The proteasome is a pivotal element of controlled proteolysis, responsible for the catabolic arm of proteostasis. By inducing apoptosis, small molecule inhibitors of proteasome peptidolytic activities are successfully utilized in treatment of blood cancers. However, the clinical potential of proteasome activation remains relatively unexplored. In this work, we introduce short TAT peptides derived from HIV-1 Tat protein and modified with synthetic turn-stabilizing residues as proteasome agonists. Molecular docking and biochemical studies point to the α1/α2 pocket of the core proteasome α ring as the binding site of TAT peptides. We postulate that the TATs' pharmacophore consists of an N-terminal basic pocket-docking "activation anchor" connected via a ß turn inducer to a C-terminal "specificity clamp" that binds on the proteasome α surface. By allosteric effects-including destabilization of the proteasomal gate-the compounds substantially augment activity of the core proteasome in vitro. Significantly, this activation is preserved in the lysates of cultured cells treated with the compounds. We propose that the proteasome-stimulating TAT pharmacophore provides an attractive lead for future clinical use.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Regulação Alostérica , Sítios de Ligação , Linhagem Celular Tumoral , Quimotripsina/química , Citoplasma/metabolismo , Humanos , Microscopia de Força Atômica , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/química , Peptídeos/síntese química , Complexo de Endopeptidases do Proteassoma/química
2.
J Pept Sci ; 20(8): 649-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24819612

RESUMO

Proteasome is a 'proteolytic factory' that constitutes an essential part of the ubiquitin-proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti-cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV-1 Tat protein: R(49) KKRRQRR(56) , supplemented with Q(66) DPI(69) fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2-based proteasome regulators.


Assuntos
Peptídeos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação Alostérica , Humanos , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Proteins ; 80(10): 2417-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22674847

RESUMO

Recently, we presented a convenient method combining a deuterium-hydrogen exchange and electrospray mass spectrometry for studying high-pressure denaturation of proteins (Stefanowicz et al., Biosci Rep 2009; 30:91-99). Here, we present results of pressure-induced denaturation studies of an amyloidogenic protein-the wild-type human cystatin C (hCC) and its single-point mutants, in which Val57 residue from the hinge region was substituted by Asn, Asp or Pro, respectively. The place of mutation and the substituting residues were chosen mainly on a basis of theoretical calculations. Observation of H/D isotopic exchange proceeding during pressure induced unfolding and subsequent refolding allowed us to detect differences in the proteins stability and folding dynamics. On the basis of the obtained results we can conclude that proline residue at the hinge region makes cystatin C structure more flexible and dynamic, what probably facilitates the dimerization process of this hCC variant. Polar asparagine does not influence stability of hCC conformation significantly, whereas charged aspartic acid in 57 position makes the protein structure slightly more prone to unfolding. Our experiments also point out pressure denaturation as a valuable supplementary method in denaturation studies of mutated proteins.


Assuntos
Cistatina C/química , Cistatina C/genética , Mutação Puntual , Substituição de Aminoácidos , Cistatina C/metabolismo , Medição da Troca de Deutério , Humanos , Cinética , Simulação de Dinâmica Molecular , Muramidase/química , Pressão , Desnaturação Proteica , Dobramento de Proteína , Estabilidade Proteica , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina/química
4.
Biomolecules ; 12(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35740902

RESUMO

Degradation of misfolded, redundant and oxidatively damaged proteins constitutes one of the cellular processes which are influenced by the 20S proteasome. However, its activity is generally thought to decrease with age which leads to the gradual accumulation of abnormal proteins in cells and their subsequent aggregation. Therefore, increasing proteasomal degradation constitutes a promising strategy to delay the onset of various age-related diseases, including neurodegenerative disorders. In this study we designed and obtained a series of peptidomimetic stimulators of 20S comprising in their sequences the C-terminal fragment of Blm10 activator. Some of the compounds were capable of enhancing the degradation of natively unfolded and oxidatively damaged proteins, such as α-synuclein and enolase, whose applicability as proteasome substrates was evaluated by microscale thermophoresis (MST). Furthermore, they increased the ChT-L activity of the proteasome in HEK293T cell extracts. Our studies indicate that the 20S proteasome-mediated protein substrates hydrolysis may be selectively increased by peptide-based stimulators acting in an allosteric manner. These compounds, after further optimization, may have the potential to counteract proteasome impairment in patients suffering from age-related diseases.


Assuntos
Doenças Neurodegenerativas , Peptidomiméticos , Células HEK293 , Humanos , Peptidomiméticos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
5.
Sci Adv ; 8(23): eabk2252, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675410

RESUMO

The proteasome has key roles in neuronal proteostasis, including the removal of misfolded and oxidized proteins, presynaptic protein turnover, and synaptic efficacy and plasticity. Proteasome dysfunction is a prominent feature of Alzheimer's disease (AD). We show that prevention of proteasome dysfunction by genetic manipulation delays mortality, cell death, and cognitive deficits in fly and cell culture AD models. We developed a transgenic mouse with neuronal-specific proteasome overexpression that, when crossed with an AD mouse model, showed reduced mortality and cognitive deficits. To establish translational relevance, we developed a set of TAT-based proteasome-activating peptidomimetics that stably penetrated the blood-brain barrier and enhanced 20S/26S proteasome activity. These agonists protected against cell death, cognitive decline, and mortality in cell culture, fly, and mouse AD models. The protective effects of proteasome overexpression appear to be driven, at least in part, by the proteasome's increased turnover of the amyloid precursor protein along with the prevention of overall proteostatic dysfunction.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Camundongos , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Adv Wound Care (New Rochelle) ; 9(12): 657-675, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124966

RESUMO

Objective: This study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice. Approach: Colorimetric lactate dehydrogenase and tetrazolium assays were used to evaluate the cytotoxicity and the effect on proliferation. PDGF2 effect on migration and chemotaxis was also checked. Immunological safety and allergic potential were evaluated with a lymphocyte activation and basophil activation test. Transcriptional profiles of ASCs and primary fibroblasts were assessed after stimulation with PDGF2. Eight-week-old BALB/c female mice were used for dorsal skin wound injury model. Results: PDGF2 showed low cytotoxicity, pro-proliferative effects on human skin cells, high immunological safety, and accelerated wound healing in mouse model. Furthermore, transcriptomic analysis of ASCs and fibroblasts revealed the activation of processes involved in wound healing and indicated its safety. Innovation: A novel peptide derived from PDGF-BB was proved to be safe drug candidate in wound healing. We also present a multifaceted in vitro model for the initial screening of new compounds that may be potentially useful in wound healing stimulation. Conclusion: The results show that peptide derived from PDGF-BB is a promising drug candidate for wound treatment.


Assuntos
Tecido Adiposo/citologia , Becaplermina/farmacologia , Fibroblastos/efeitos dos fármacos , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Quimiotaxia/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Preparações Farmacêuticas , Proteínas Recombinantes , Pele/citologia , Células-Tronco/metabolismo
7.
J Med Chem ; 62(1): 359-370, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30452262

RESUMO

Proline- and arginine-rich peptide PR11 is an allosteric inhibitor of 20S proteasome. We modified its sequence inter alia by introducing HbYX, RYX, or RHbX C-terminal extensions (Hb, hydrophobic moiety; R, arginine; Y, tyrosine; X, any residue). Consequently, we were able to improve inhibitory potency or to convert inhibitors into strong activators: the former with an aromatic penultimate Hb residue and the latter with the HbYX motif. The PR peptide activator stimulated 20S proteasome in vitro to efficiently degrade protein substrates, such as α-synuclein and enolase, but also activated proteasome in cultured fibroblasts. The positive and negative PR modulators differently influenced the proteasome conformational dynamics and affected opening of the substrate entry pore. The resolved crystal structure showed PR inhibitor bound far from the active sites, at the proteasome outer face, in the pocket used by natural activators. Our studies indicate the opportunity to tune proteasome activity by allosteric regulators based on PR peptide scaffold.


Assuntos
Peptídeos/química , Complexo de Endopeptidases do Proteassoma/química , Regulação Alostérica , Sequência de Aminoácidos , Arginina/química , Sítios de Ligação , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Prolina/química , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Sci Rep ; 7(1): 6177, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733623

RESUMO

Proteasomes are responsible for protein turnover in eukaryotic cells, degrading short-lived species but also removing improperly folded or oxidatively damaged ones. Dysfunction of a proteasome results in gradual accumulation of misfolded/damaged proteins, leading to their aggregation. It has been postulated that proteasome activators may facilitate removal of such aggregation-prone proteins and thus prevent development of neurodegenerative disorders. However, the discovery of pharmacologically relevant compounds is hindered by insufficient structural understanding of the activation process. In this study we provide a model peptidic activator of human proteasome and analyze the structure-activity relationship within this novel scaffold. The binding mode of the activator at the relevant pocket within the proteasome has been determined by X-ray crystallography. This crystal structure provides an important basis for rational design of pharmacological compounds. Moreover, by providing a novel insight into the proteasome gating mechanism, our results allow the commonly accepted model of proteasome regulation to be revisited.


Assuntos
Peptídeos/síntese química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Peso Molecular , Peptídeos/química , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/química , Saccharomyces cerevisiae/química , Relação Estrutura-Atividade
9.
PLoS One ; 11(3): e0151902, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27008547

RESUMO

α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography.


Assuntos
Biopolímeros/química , Microscopia de Força Atômica/métodos , alfa 1-Antitripsina/química , Humanos
10.
PLoS One ; 10(11): e0143038, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26575189

RESUMO

The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Regulação Alostérica , Substituição de Aminoácidos , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Inibidores de Proteassoma/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
11.
Curr Pharm Des ; 19(6): 1010-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23016682

RESUMO

The giant proteolytic factory called the proteasome came a long way from a biochemical curio to a major regulator of cellular physiology and a renowned drug target within the ubiquitin proteasome pathway (UPP). Thanks to availability of highly specific inhibitors of the proteasome, in less than twenty years it was possible to identify major transcription factors, cyclins, and products of oncogenes as crucial substrates for the UPP. Nine years passed since the FDA speedily approved bortezomib, the inhibitor of proteasome, for treatment of multiple myeloma. One year after its approval, the field was honored by awarding the Nobel Prize to Hershko, Ciechanover and Rose for introducing the concept of controlled proteolysis of ubiquitin-tagged substrates, with proteasome as the intracellular recycling facility. Taking into consideration the universal involvement of the proteasome in the life of all cells in human body, it comes to no surprise that the enzyme is deeply implicated in etiology, progression, diagnosis or cure of multiple diseases. Below we discuss some aspects of the involvement: from direct causative links to changes in proteasome properties that correlate with pathological conditions. We start with diseases collectively known as cancer, and with immune system-related pathologies. Here, the proteasome inhibitors are either already used in clinics, or undergo advanced preclinical screening. Then, we will continue with cardiovascular disorders, followed by aging. Changes of the proteasome make-up during aging may be a priming factor for neurodegenerative diseases, described last. We discuss the potential for proteasome regulation: inhibition, activation or specificity modulation, to successfully enter the clinical setting.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Complexo de Endopeptidases do Proteassoma/química , Proteólise/efeitos dos fármacos , Nível de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA