Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 61, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170326

RESUMO

BACKGROUND: Breast adenocarcinoma cells (MCF-7) are characterized by the overexpression of apoptotic marker genes and proliferative cell nuclear antigen (PCNA), which promote cancer cell proliferation. Thymol, derived from Nigella sativa (NS), has been investigated for its potential anti-proliferative and anticancer properties, especially its ability to suppress Cyclin D1 and PCNA expression, which are crucial in the proliferation of cancer cells. METHODS: The cytotoxicity of thymol on MCF-7 cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release methods. Thymol was tested at increasing concentrations (0-1000 µM) to evaluate its impact on MCF-7 cell growth. Additionally, Cyclin D1 and PCNA gene expression in thymol-treated and vehicle control groups of MCF-7 were quantified using real-time Polymerase Chain Reaction (RT-qPCR). Protein-ligand interactions were also investigated using the CB-Dock2 server. RESULTS: Thymol significantly inhibited MCF-7 cell growth, with a 50% inhibition observed at 200 µM. The gene expression of Cyclin D1 and PCNA was down-regulated in the thymol-treated group relative to the vehicle control. The experimental results were verified through protein-ligand interaction investigations. CONCLUSIONS: Thymol, extracted from NS, demonstrated specific cytotoxic effects on MCF-7 cells by suppressing the expression of Cyclin D1 and PCNA, suggesting its potential as an effective drug for MCF-7. However, additional in vivo research is required to ascertain its efficacy and safety in medical applications.


Assuntos
Neoplasias da Mama , Nigella sativa , Humanos , Feminino , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células MCF-7 , Neoplasias da Mama/genética , Timol/farmacologia , Timol/uso terapêutico , Nigella sativa/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Antígenos Nucleares/uso terapêutico , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação para Baixo , Ligantes , Proliferação de Células
2.
Environ Res ; 251(Pt 2): 118698, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518906

RESUMO

Sixty-eight morphologically distinct isolates of marine actinomycetes were derived from seashore, mangrove, and saltpan ecosystems located between the Palk Strait and Gulf of Mannar region, Bay of Bengal, Tamilnadu. Twenty-five (36.8%) isolates exhibited anti-mycotic activity against Candida albicans and Cryptococcus neoformans in preliminary screening, and 4 isolates with prominent activity were identified and designated at the genus level as Streptomyces sp. VPTS3-I, Streptomyces sp. VPTS3-2, Streptomyces sp. VPTSA1-4 and Streptomyces sp. VPTSA1-8. All the potential antagonistic isolates were further characterized with phenotypic and genotypic properties including 16S rRNA gene sequencing and identified species level as Streptomyces afghaniensis VPTS3-1, S. matensis VPTS3-2, S. tuirus VPTSA1-4 and S. griseus VPTSA1-8. In addition, the active fractions from the potential antagonistic streptomycetes were extracted with organic solvents by shake flask culture method and the anti-mycotic efficacies were evaluated. The optimization parameters for the production of the anti-mycotic compound were found to be pH between 7 and 8, the temperature at 30ᵒC, the salinity of 2%, incubation of 9 days, and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch casein medium.


Assuntos
Antifúngicos , Streptomyces , Índia , Streptomyces/genética , Streptomyces/metabolismo , Antifúngicos/farmacologia , Microbiologia do Solo , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Baías/microbiologia , RNA Ribossômico 16S/genética
3.
Biotechnol Appl Biochem ; 71(3): 512-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38253987

RESUMO

The contemporary food industry's uses of nanoemulsions (NEs) include food processing, effective nutraceutical delivery, the development of functional chemicals, and the synthesis of natural preservatives, such as phytocompounds. Although cinnamon essential oil (CEO) is widely used in the cosmetic, pharmaceutical, and food industries, it is difficult to add to aqueous-based food formulations due to its weak stability and poor water solubility. This study describes the formulation of a CEO nanoemulsion (CEONE) by spontaneous emulsification and evaluates its antibacterial and antibiofilm properties against biofilm-forming Serratia rubidaea BFMO8 isolated from spoiled emperor fish (Lethrinus miniatus). Bacteria causing spoilage in emperor fish were isolated and identified as S. rubidaea using common morphological, cultural, and 16S RNA sequencing methods, and their ability to form biofilms and their susceptibility to CEONE were assessed using biofilm-specific methods. The spontaneous emulsification formulation of CEONE was accomplished using water and Tween 20 surfactant by manipulating organic and aqueous phase interface properties and controlling particle growth by capping surfactant increases. The best emulsification, with highly stable nano-size droplets, was accomplished at 750 rpm and a 1:3 ratio concentration. The stable CEONE droplet size, polydispersity index, and zeta potential values were 204.8 nm, 0.115, and -6.05 mV, respectively. FTIR and high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analyses have revealed carboxyl, carbonyl, and phenol-like primary phytochemical functional groups in CEO and CEONE, which contribute to their antibacterial and antibiofilm properties.


Assuntos
Antibacterianos , Biofilmes , Cinnamomum zeylanicum , Emulsões , Óleos Voláteis , Serratia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química , Emulsões/farmacologia , Cinnamomum zeylanicum/química , Serratia/química , Serratia/efeitos dos fármacos , Serratia/metabolismo , Animais , Testes de Sensibilidade Microbiana , Peixes/microbiologia
4.
J Basic Microbiol ; : e2300721, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825809

RESUMO

Pigments are widely used in food supplements envisaging attractive colors along with health benefits. The desired advancements in the nutraceutical and antioxidant properties of pigments utilized in food products necessitate the search for novel additives. The present study is the first in the field to report the pigment-producing endolichenic bacteria, Bacillus sp. LDAB-1 from Dirinaria aegilita. Morphological, biochemical, and molecular characterization of the bacterium emphasizes that ideal pigment production occurs when utilizing sucrose and sodium nitrate. The pigment was salted out and dialyzed for further qualitative characterization using ultraviolet-visible, fluorescence, and Fourier transform infrared spectra and the results corroborated the presence of betalains. The antioxidant activity of betalain is closer to the efficiency of α-tocopherol, which confers the pigment properties for antioxidant and nutraceutical significance. An optimal methodology for pigment affirmation is an issue when using an alternative methodology. Hence, the present assessment employs a comparative analysis of findings from both a spectrophotometric method and image processing technology encompassing RGB, CMYK, YCbCr, and L*a*b* color space models. Amongst these, the L*a*b* model potentially provides an effective modality for determining the pigment concentration. Bland-Altman plot analysis indicates similar consistency levels in betalain quantification by both methods at 95% confidence intervals, affirming the integrity and consistency of color image processing technology. Consequently, the present study represents novelty and innovativeness in reporting endolichenic Bacillus sp. LDAB-1 from D. aegilita and a rational image optimization protocol for pigment elucidation characteristics.

5.
Food Chem ; 448: 139000, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547706

RESUMO

C-Phycocyanin and sugar (C-PC/S) blended agar hydrocolloid was prepared and its rheological, thermo-functional and morphological properties were examined based on the fluorescence excitation-emission matrix profile. Sucrose (40%, w/v) determined as a superior preservative, maintaining the native conformation of C-PC effectively. C-PC/S exhibited enhanced structural integrity with high storage modulus (G') and 86.4% swelling index. FT-IR demonstrated strong intramolecular bonding. TGA revealed that the presence of sucrose prolonged the devolatilization peak up to 325 °C, with a degradation rate of -2.273 mg/min, it the thermal stability. C-PC/S fortified hydrocolloid in ice cream (5.0% w/w), reduced melting rate up to five times. In conclusion, sucrose as a promising enhancer of color stability and structural integrity for C-PC, and this combination effectively improves the functional and rheological properties. Further, the findings exposed the agar hydrocolloid as a potential enhancer of color retention and improved performance for various food and cosmetic products.

6.
Front Microbiol ; 15: 1343988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328419

RESUMO

Introduction: Fungal keratitis (FK) poses a severe threat to vision, potentially leading to blindness if not promptly addressed. Clitoria ternatea flower extracts have a history of use in Ayurvedic and Indian traditional medicines, particularly for treating eye ailments. This study investigates the antifungal and antibiofilm effects of Clitoria ternatea flower extracts on the FK clinical isolate Coniochaeta hoffmannii. Structural details and key compound identification were analysed through FTIR and GC-MS. Methods: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of Clitoria ternatea flower extracts were determined using broth dilution and well plate techniques. Biofilm inhibitory activity was assessed through microscopic evaluation, while anti-irritant and cytotoxic properties were evaluated using CAE-EI and MTT assays. Through GC-MS and FT-IR analysis the compounds dissolved in the extract and their functional group were studied, and their toxicity screening and pharmacokinetic prediction were conducted in silico. Subsequently, compounds with high corneal permeability were further identified, and molecular docking and simulation studies at 150 ns were used to investigate their interactions with fungal virulence factors and human inflammatory proteins. Results and Discussion: At a concentration of 250 µg/mL, the Clitoria ternatea flower extract displayed effective biofilm inhibition. MIC and MFC values were determined as 500 and 1000 µg/mL, respectively. CAE-EI and MTT assays indicated no significant irritant and cytotoxic effects up to a concentration of 3 mg/mL. Compounds like 9,9-dimethoxybicyclo[3.3.1]nonane-2,4-dione showed high corneal permeability with strong and stable interactions with fungal virulence cellobiose dehydrogenase, endo ß 1,4 xylanase, and glucanase, as well as corneal inflammation-associated human TNF-α and Interleukin IL-1b protein targets. The findings indicate that extracts from C. ternatea flowers could be formulated for an effective and safe alternative for developing new topical FK therapeutics.

7.
ACS Omega ; 8(50): 48317-48325, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144107

RESUMO

Catheter-associated urinary tract infections (CAUTIs) frequently occur following the insertion of catheters in hospitalized patients, often leading to severe clinical complications. These complications are exacerbated by biofilm-forming organisms such as Staphylococcus aureus, contributing to the emergence of multidrug-resistant (MDR) strains, which complicates treatment strategies. This study aims to investigate the antibacterial, antibiofilm, and antiadhesive properties of duloxetine against S. aureus in the context of CAUTI. Our findings demonstrate that duloxetine exhibits significant antibacterial activity, as evidenced by the agar diffusion method. A minimal inhibitory concentration (MIC) of 37.5 µg/mL was established using the microdilution method. Notably, duloxetine displayed inhibitory effects against biofilm formation on polystyrene surfaces up to its MIC level, as demonstrated by the crystal violet method. Intriguingly, the study also revealed that duloxetine could prevent biofilm formation at lower concentrations and reduce mature biofilms, as confirmed by scanning electron microscopy (SEM) and quantitative biofilm assays. Furthermore, duloxetine-coated silicone catheter tubes exhibited antibacterial properties against S. aureus in a bladder model, visualized by confocal laser scanning microscopy (CLSM) and corroborated through FDA and PI staining, highlighting noticeable morphological changes in S. aureus post-treatment. In conclusion, this study presents duloxetine as a promising alternative agent with antibacterial and antiadhesive properties against S. aureus in the prevention and management of CAUTI, warranting further exploration in the clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA