Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936976

RESUMO

Estrogen receptor (ER)-negative breast cancers are known to be aggressive and unresponsive to anti-estrogen therapy, and triple negative breast cancers are associated with poor prognosis and metastasis. Thus, new targeted therapies are needed. FOXM1 is abundantly expressed in human cancers and implicated in protecting tumor cells from oxidative stress by reducing the levels of intracellular reactive oxygen species (ROS). Aspirin, a prototypical anti-cancer agent with deleterious side effects, has been modified to release nitric oxide and hydrogen sulfide, called NOSH-aspirin (NOSH-ASA), generating a 'safer' class of new anti-inflammatory agents. We evaluated NOSH-ASA against (ER)-negative breast cancer using cell lines and a xenograft mouse model. NOSH-ASA strongly inhibited growth of MDA-MB-231 and SKBR3 breast cancer cells with low IC50s of 90{plus minus}5 and 82{plus minus}5 nM, respectively, with marginal effects on a normal breast epithelial cell line. NOSH-ASA inhibited cell proliferation, caused G0/G1 phase arrest, increased apoptosis, and was associated with increases in ROS. In MDA-MB-231 cell xenografts, NOSH-ASA reduced tumor size markedly, which was associated with reduced proliferation (decreased PCNA expression), induction of apoptosis (increased TUNEL positive cells), and increased ROS, while NF-kB and FoxM1 that were high in untreated xenografts were significantly reduced. mRNA data for FoxM1, p21 and CyclinD1 corroborated with the respective protein expressions and arrest of cells. Taken together, these molecular events contribute to NOSH-ASA mediated growth inhibition and apoptotic death of (ER)-negative breast cells in vitro and in vivo. Additionally, as a ROS-inducer and FOXM1-inhibitor, NOSH-ASA has potential as a targeted therapy. Significance Statement In this investigation, we examined the cellular effects and xenograft tumor inhibitory potential of NOSH-aspirin, an NO and H2S-donating hybrid, against ER-negative breast cancer, which currently lacks effective therapeutic options. The induction of reactive oxygen species and subsequent downregulation of FOXM1 represents a plausible mechanism contributing to the observed decrease in cell proliferation and concurrent increase in apoptosis. NOSH-ASA demonstrated a remarkable reduction in tumor size by 90% without inducing any observable gross toxicity, underscoring its promising translational potential.

2.
BMC Cardiovasc Disord ; 23(1): 411, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605135

RESUMO

BACKGROUND: The favorable effects of nitrate against myocardial ischemia-reperfusion injury (MIRI) have primarily focused on male rats and in short term. Here we determine the impact of long-term nitrate intervention on baseline cardiac function and the resistance to MIRI in female rats. METHODS: Female Wistar rats were randomly divided into untreated and nitrate-treated (100 mg/L sodium nitrate in drinking water for 9 months) groups (n = 14/group). At intervention end, levels of serum progesterone, nitric oxide metabolites (NOx), heart NOx concentration, and mRNA expressions of NO synthase isoforms (NOS), i.e., endothelial (eNOS), neuronal (nNOS), and inducible (iNOS), were measured. Isolated hearts were exposed to ischemia, and cardiac function indices (CFI) recorded. When the ischemia-reperfusion (IR) period ended, infarct size, NO metabolites, eNOS, nNOS, and iNOS expression were measured. RESULTS: Nitrate-treated rats had higher serum progesterone (29.8%, P = 0.013), NOx (31.6%, P = 0.035), and higher heart NOx (60.2%, P = 0.067), nitrite (131%, P = 0.018), and eNOS expression (200%, P = 0.005). Nitrate had no significant effects on baseline CFI but it increased recovery of left ventricular developed pressure (LVDP, 19%, P = 0.020), peak rate of positive (+ dp/dt, 16%, P = 0.006) and negative (-dp/dt, 14%, P = 0.014) changes in left ventricular pressure and decreased left ventricular end-diastolic pressure (LVEDP, 17%, P < 0.001) and infarct size (34%, P < 0.001). After the IR, the two groups had significantly different heart nitrite, nitrate, NOx, and eNOS and iNOS mRNA expressions. CONCLUSIONS: Long-term nitrate intervention increased the resistance to MIRI in female rats; this was associated with increased heart eNOS expression and circulating progesterone before ischemia and blunting ischemia-induced increased iNOS and decreased eNOS after MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Nitratos , Feminino , Masculino , Ratos , Animais , Nitritos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Progesterona/farmacologia , Ratos Wistar , Óxido Nítrico , RNA Mensageiro
3.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902456

RESUMO

The standard of care for most malignant solid tumors still involves tumor resection followed by chemo- and radiation therapy, hoping to eliminate the residual tumor cells. This strategy has been successful in extending the life of many cancer patients. Still, for primary glioblastoma (GBM), it has not controlled recurrence or increased the life expectancies of patients. Amid such disappointment, attempts to design therapies using the cells in the tumor microenvironment (TME) have gained ground. Such "immunotherapies" have so far overwhelmingly used genetic modifications of Tc cells (Car-T cell therapy) or blocking of proteins (PD-1 or PD-L1) that inhibit Tc-cell-mediated cancer cell elimination. Despite such advances, GBM has remained a "Kiss of Death" for most patients. Although the use of innate immune cells, such as the microglia, macrophages, and natural killer (NK) cells, has been considered in designing therapies for cancers, such attempts have not reached the clinic yet. We have reported a series of preclinical studies highlighting strategies to "re-educate" GBM-associated microglia and macrophages (TAMs) so that they assume a tumoricidal status. Such cells then secrete chemokines to recruit activated, GBM-eliminating NK cells and cause the rescue of 50-60% GBM mice in a syngeneic model of GBM. This review discusses a more fundamental question that most biochemists harbor: "since we are generating mutant cells in our body all the time, why don't we get cancer more often?" The review visits publications addressing this question and discusses some published strategies for re-educating the TAMs to take on the "sentry" role they initially maintained in the absence of cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunidade Inata , Microambiente Tumoral , Animais , Camundongos , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Imunoterapia , Macrófagos/metabolismo , Microglia/metabolismo , Microambiente Tumoral/imunologia , Reparo do DNA
4.
Pflugers Arch ; 474(1): 83-98, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34313822

RESUMO

Hyperuricemia, defined as elevated serum concentrations of uric acid (UA) above 416 µmol L-1, is related to the development of cardiometabolic disorders, probably via induction of endothelial dysfunction. Hyperuricemia causes endothelial dysfunction via induction of cell apoptosis, oxidative stress, and inflammation; however, it's interfering with insulin signaling and decreased endothelial nitric oxide (NO) availability, resulting in the development of endothelial insulin resistance, which seems to be a major underlying mechanism for hyperuricemia-induced endothelial dysfunction. Here, we elaborate on how hyperuricemia induces endothelial insulin resistance through the disruption of insulin-stimulated endothelial NO synthesis. High UA concentrations decrease insulin-induced NO synthesis within the endothelial cells by interfering with insulin signaling at either the receptor or post-receptor levels (i.e., proximal and distal steps). At the proximal post-receptor level, UA impairs the function of the insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) in the insulin signaling pathway. At the distal level, high UA concentrations impair endothelial NO synthase (eNOS)-NO system by decreasing eNOS expression and activity as well as by direct inactivation of NO. Clinically, UA-induced endothelial insulin resistance is translated into impaired endothelial function, impaired NO-dependent vasodilation, and the development of systemic insulin resistance. UA-lowering drugs may improve endothelial function in subjects with hyperuricemia.


Assuntos
Endotélio Vascular/metabolismo , Hiperuricemia/metabolismo , Resistência à Insulina , Óxido Nítrico/metabolismo , Ácido Úrico/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Hiperuricemia/complicações
5.
Nitric Oxide ; 128: 72-102, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029975

RESUMO

Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.


Assuntos
COVID-19 , Sulfeto de Hidrogênio , Antivirais , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Inflamação/tratamento farmacológico , Óxido Nítrico/uso terapêutico , Pandemias , SARS-CoV-2
6.
Nitric Oxide ; 124: 15-23, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504499

RESUMO

Decreased heart levels of nitric oxide (NO) and hydrogen sulfide (H2S) in type 2 diabetes (T2D) are associated with a higher risk of mortality following ischemia-reperfusion (IR) injury. This study aimed to determine the effects of co-administration of sodium nitrite and sodium hydrosulfide (NaSH) on IR injury in the isolated heart from rats with T2D. Two-month-old male rats were divided into 5 groups (n = 7/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite + NaSH. T2D was induced using a high-fat diet and a single low dose streptozotocin (30 mg/kg) in intraperitoneal injection. Nitrite (50 mg/L in drinking water) and NaSH (0.28 mg/kg, daily intraperitoneal injection) were administrated for 9 weeks. At the end of the study, hemodynamic parameters were recorded, and infarct size and mRNA expression of H2S- and NO-producing enzymes were measured in the isolated hearts. Nitrite administration to rats with T2D improved recovery of left ventricular developed pressure (LVDP) and the peak rates of positive and negative changes in LV pressure (±dp/dt) by 30%, 17%, and 7.9%, respectively, and decreased infarct size by 18.4%. Co-administration of nitrite and NaSH resulted in further improve in recovery of LVDP, +dp/dt, and -dp/dt by 8.3% (P = 0.0478), 8.4% (P = 0.0085), and 9.0% (P = 0.0004), respectively, and also further decrease in infarct size by 24% (P = 0.0473). Nitrite treatment decreased inducible and neuronal NO synthases (iNOS, 0.4-fold; nNOS, 0.4-fold) and cystathionine ß-synthase (CBS, 0.1-fold) expression in the isolated heart from rats with T2D. Co-administration of nitrite and NaSH further increased cystathionine γ-lyase (CSE, 2.8-fold) and endothelial NOS (eNOS, 2.0-fold) expression and further decreased iNOS (0.4-fold) expression. In conclusion, NaSH at a low dose potentiates the favorable effects of inorganic nitrite against myocardial IR injury in a rat model of T2D. These anti-ischemic effects, following co-administration of nitrite and NaSH, were associated with higher CSE-derived H2S and eNOS-derived NO as well as lower iNOS-derived NO in the diabetic hearts.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Hepatopatia Gordurosa não Alcoólica , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Infarto , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Ratos , Ratos Wistar
7.
BMC Endocr Disord ; 22(1): 79, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351094

RESUMO

BACKGROUND AND AIM: Hydrogen sulfide (H2S), a signaling gasotransmitter, is involved in carbohydrate metabolism. Here, we aimed to assess the potential association between serum H2S and dysglycemia in the framework of a population-based study. METHODS: Adults men and women with completed data (n = 798), who participated in the Tehran Lipid and Glucose Study (2014-2017) were included in the study. Medians of fasting serum H2S concentration were compared across the glycemic status of the participants, defined as type 2 diabetes mellitus (T2DM), isolated impaired fasting glucose (IIFG), isolated impaired glucose tolerance (IIGT), combined IFG-IGT, and normal glycemia [i.e., those with both normal fasting glucose (NFG) and normal glucose tolerance (NGT)]. Multinomial logistic regression was used to assess potential associations between serum H2S and the defined glycemic status. RESULTS: Mean age of the participants was 45.1 ± 14.0 y, and 48.1% were men. Prevalence of T2DM, IIFG, IIGT, and combined IFG-IGT was 13.9, 9.1, 8.1, and 4.8% respectively. No significant difference was observed in serum H2S concentrations between the groups. Lower serum H2S (< 39.6 µmol/L) was associated with an increased chance of having IIGT (OR = 1.96, 95% CI = 1.15-3.34) in the adjusted model. CONCLUSION: Reduced serum H2S level may be associated with impaired glucose tolerance.


Assuntos
Diabetes Mellitus Tipo 2 , Sulfeto de Hidrogênio , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Teste de Tolerância a Glucose , Humanos , Irã (Geográfico)/epidemiologia , Masculino
8.
Cell Biochem Funct ; 40(7): 750-759, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36098488

RESUMO

Nitrate, a nitric oxide (NO) donor, has antiobesity effect in female rats. This study hypothesized that the antiobesity effect of nitrate in female rats is due to the browning of white adipose tissue (WAT). Female Wistar rats (aged 8 months) were divided into two groups (n = 10/group): the control group received tap water and the nitrate group received water containing 100 mg/L of sodium nitrate for 9 months. At months 0, 3, 6, and 9, obesity indices were measured. At month 9, gonadal adipose tissue was used to measure messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), PPAR-γ coactivator 1-α (PGC1-α), uncoupling protein 1 (UCP1), and adipocyte density and area. After the 9-month intervention, nitrate-treated rats had lower body weight, body mass index, thoracic circumference, and abdominal circumference by 6.4% (p = .012), 9.1% (p = .029), 6.0% (p = .056), and 5.7% (p = .098), respectively. In addition, nitrate-treated rats had higher PPAR-γ (mRNA: 1.78-fold, p = .016 and protein: 19%, p = .076), PGC1-α (mRNA: 1.69-fold, p = .012 and protein: 68%, p = .001), and UCP1 (mRNA: 2.50-fold, p = .001 and protein: 81%, p = .001) in gonadal adipose tissue. Nitrate also reduced adipocyte area by 35% (p = .054) and increased adipocyte density by 31% (p = .086). In conclusion, antiobesity effect of nitrate in female rats is associated with increased browning of gonadal adipose tissue as indicated by higher expression of PPAR-γ, PGC1-α, and UCP1 and reduced adipocyte area and increased adipocyte density.


Assuntos
Tecido Adiposo Marrom , Nitratos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Nitratos/metabolismo , Nitratos/farmacologia , Óxido Nítrico/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Água/metabolismo , Água/farmacologia
9.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163356

RESUMO

Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Neoplasias/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Ensaios Clínicos como Assunto , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430371

RESUMO

Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.


Assuntos
Tratamento Farmacológico da COVID-19 , Sulfeto de Hidrogênio , Hipertensão , Humanos , Idoso , Sistema Renina-Angiotensina/fisiologia , Sulfeto de Hidrogênio/uso terapêutico , Óxido Nítrico , SARS-CoV-2 , Hipertensão/tratamento farmacológico
11.
Cell Mol Neurobiol ; 41(7): 1497-1507, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32601776

RESUMO

Alzheimer's disease (AD) is characterized with increased formation of amyloid-ß (Aß) in the brain. Aß peptide toxicity is associated with disturbances of several intracellular signaling pathways such as mitogen activated protein kinases (MAPKs). The aim of this study was to investigate the role of MAPKs and their interactions in Aß-induced neurotoxicity using isolated hippocampal neurons from the rat. Primary hippocampal cells were cultured in neurobasal medium for 4 days. Cells were treated with Aß25-35 and/or MAPKs inhibitors for 24 h. Cell viability was determined by an MTT assay and phosphorylated levels of P38, JNK, and ERK were measured by Western blots. Aß treatment (10-40 µM) significantly decreased hippocampal cell viability in a dose-dependent manner. Inhibition of P38 and ERK did not restore cell viability, while JNK inhibition potentiated the Aß-induced neurotoxicity. Compared to the controls, Aß treatment increased levels of phosphorylated JNK, ERK, and c-Jun, while it had no effect on levels of phosphorylated P38. In addition, P38 inhibition led to decreased expression levels of phosphorylated ERK; inhibition of JNK resulted in decreased expression of c-Jun; and inhibition of ERK, decreased phosphorylated levels of JNK. These results strongly suggest that P38, ERK, and JNK are not independently involved in Aß-induced toxicity in the hippocampal cells. In AD, which is a multifactorial disease, inhibiting a single member of the MAPK signaling pathway, does not seem to be sufficient to mitigate Aß-induced toxicity and thus their interactions with each other or potentially with different signaling pathways should be taken into account.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fragmentos de Peptídeos/metabolismo , Animais , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947005

RESUMO

Beneficial metabolic effects of inorganic nitrate (NO3-) and nitrite (NO2-) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO3- to NO2- and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO2- to NO following ingestion of NO3-. In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO3-/NO2- supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO2--to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO3- in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO3- therapy.


Assuntos
Ácido Ascórbico/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Nitratos/farmacocinética , Oxirredutases do Álcool/deficiência , Animais , Arginina/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Deficiência de Ácido Ascórbico/complicações , Deficiência de Ácido Ascórbico/tratamento farmacológico , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/complicações , Dieta , Suco Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Glucose/metabolismo , Cobaias , Homeostase , Humanos , Insulina/metabolismo , Camundongos , Modelos Animais , Nitratos/administração & dosagem , Nitratos/metabolismo , Nitratos/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitritos/metabolismo , Nitritos/farmacocinética , Necessidades Nutricionais , Oxirredução , Ratos , Especificidade da Espécie
13.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575998

RESUMO

During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.


Assuntos
Curcumina/uso terapêutico , Glioblastoma/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Feminino , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Óxido Nítrico/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
14.
Molecules ; 26(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810327

RESUMO

Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 µm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.


Assuntos
Ácido Cítrico/farmacologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Creme para a Pele/farmacologia , Nitrito de Sódio/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Ácido Cítrico/uso terapêutico , Colágeno/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Pele/irrigação sanguínea , Pele/metabolismo , Creme para a Pele/uso terapêutico , Nitrito de Sódio/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Nitric Oxide ; 103: 20-28, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693171

RESUMO

PURPOSE: Decreased nitric oxide bioavailability in skin contributes to impaired wound healing in type 2 diabetes (T2D). This study aims at determining effects of acidified nitrite on wound closure as well as inflammatory and antioxidants markers in wound tissue of rats with T2D. MAIN METHODS: Skin wound was made on the back of rats 28 days after the induction of T2D (high-fat diet/low-dose of streptozotocin). Control and diabetic rats were subdivided into two subgroups: Untreated control (C), acidified nitrite-treated control (CN), untreated diabetes (D), and acidified nitrite-treated diabetes (DN). Acidified nitrite was applied once daily from day 3 to day 28 and the wounds were photographed for macroscopic changes. On days 3, 7, 14, 21, and 28 after wounding, wound levels of inflammatory and antioxidant markers were measured. RESULTS: Half closure time (CT50%) was significantly lower in acidified nitrite-treated diabetic rats compared to untreated ones (5.1 vs. 8.0 days, P < 0.001). Inflammatory response was delayed in diabetic rats and persistent inflammatory response was observed at day 14 after wounding. Acidified nitrite application restored the inflammatory response and antioxidant levels to control values. CONCLUSIONS: Acidified nitrite accelerated wound healing in rats with T2D by restoring delayed inflammatory response and augmentation of antioxidant defense.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inflamação/tratamento farmacológico , Nitritos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar , Estreptozocina , Cicatrização/efeitos dos fármacos
16.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093102

RESUMO

Decreased circulating levels of hydrogen sulfide (H2S) are associated with higher mortality following myocardial ischemia. This study aimed at determining the long-term dose-dependent effects of sodium hydrosulfide (NaSH) administration on myocardial ischemia-reperfusion (IR) injury. Male rats were divided into control and NaSH groups that were treated for 9 weeks with daily intraperitoneal injections of normal saline or NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg), respectively. At the end of the study, hearts from all rats were isolated and hemodynamic parameters were recorded during baseline and following IR. In isolated hearts, infarct size, oxidative stress indices as well as mRNA expression of H2S-, nitric oxide (NO)-producing enzymes, and inflammatory markers were measured. In heart tissue following IR, low doses of NaSH (0.28 and 0.56 mg/kg) had no effect, whereas an intermediate dose (1.6 mg/kg), improved recovery of hemodynamic parameters, decreased infarct size, and decreased oxidative stress. It also increased expression of cystathionine γ-lyase (CSE), Raf kinase inhibitor protein (RKIP), endothelial NO synthase (eNOS), and neuronal NOS (nNOS), as well as decreased expression of inducible NOS (iNOS) and nuclear factor kappa-B (NF-κB). At the high dose of 5.6 mg/kg, NaSH administration was associated with worse recovery of hemodynamic parameters and increased infarct size as well as increased oxidative stress. This dose also decreased expression of CSE, RKIP, and eNOS and increased expression of iNOS and NF-κB. In conclusion, chronic treatment with NaSH has a U-shaped concentration effect on IR injury in heart tissue. An intermediate dose was associated with higher CSE-derived H2S, lower iNOS-derived NO, lower oxidative stress, and inflammation in heart tissue following IR.


Assuntos
Sulfeto de Hidrogênio/administração & dosagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Hemodinâmica/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , NF-kappa B/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Ratos , Ratos Wistar
17.
J Cell Physiol ; 234(10): 17937-17945, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825200

RESUMO

Thyroid hormones have a role in the regulation of hydrogen sulfide (H2 S) biosynthesis. In this study, we determined the effects of hyperthyroidism on H2 S levels in various tissues and messenger RNA (mRNA) expression of cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in the liver and muscles of the rat. Sixteen male Wistar rats were divided into the hyperthyroid and the control groups. Hyperthyroidism was induced by adding l-thyroxine (12 mg/L) to drinking water for a period of 21 days. H2 S concentrations in serum, liver, aorta, heart, and soleus muscles, as well as mRNA expressions of CBS, CSE, and 3-MST in these tissues were measured at Day 21. Hyperthyroid rats had lower H2 S levels in the serum compared with controls (14.7 ± 1.4 vs. 25.7 ± 1.6 µmol/L, p < 0.001). Compared with controls, hyperthyroid rats had lower levels of H2 S in the aorta (89%), heart (80%), and soleus (103%) muscles, but higher levels in the liver (35%). Hyperthyroidism decreased the ratio of CBS/CSE mRNA expression in the liver and the CSE/CBS mRNA expression in the muscles by decreasing CBS levels in liver (34% cf. controls) and CSE levels in the aorta, heart, and soleus muscles (respectively, 51%, 7%, and 52% cf.). In addition, hyperthyroidism decreased the mRNA expression of 3-MST in the liver (51%) and aorta (33%), and increased it in the heart (300%) and soleus muscle (182%). In conclusion, hyperthyroidism increased H2 S levels in the liver and decreased it in muscles; these effects are at least in part due to increases and decreases in expression of CSE in the liver and muscles, respectively. These data indicate an association between thyroid hormone status and gene expression of the H2 S-producing enzymes in the rat.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipertireoidismo/enzimologia , Fígado/enzimologia , Músculo Esquelético/enzimologia , Músculo Liso Vascular/enzimologia , Miocárdio/enzimologia , Sulfurtransferases/metabolismo , Animais , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Modelos Animais de Doenças , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Sulfeto de Hidrogênio/sangue , Hipertireoidismo/sangue , Hipertireoidismo/genética , Masculino , Ratos Wistar , Sulfurtransferases/genética
18.
Nitric Oxide ; 92: 60-72, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479766

RESUMO

OBJECTIVE: Decreased nitric oxide (NO) bioavailability and hydrogen sulfide (H2S) deficiency have been linked with the pathophysiology of type 2 diabetes (T2D). Restoration of NO levels by nitrite have been associated with favorable metabolic effects in T2D. Moreover, H2S can potentiate the effects of NO in the cardiovascular system. The aim of this study was to determine the effects of long-term co-administration of sodium nitrite and sodium hydrosulfide (NaSH) on carbohydrate metabolism in type 2 diabetic rats. METHODS: T2D was induced using chronic high fat diet (HFD) feeding combined with low dose streptozotocin (STZ) regimen. Rats were divided into 5 groups (N = 10/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite + NaSH. Nitrite (50 mg/L in drinking water) and NaSH (0.28 mg/kg, daily i. p. injection) were administered for 9 weeks. Fasting serum glucose, insulin, lipid profile, liver function tests, and oxidative stress indices were measured. Intraperitoneal glucose tolerance test (GTT) was performed at the end of the eighth week, and three days later, intraperitoneal pyruvate tolerance test (PTT) was done. Protein levels and mRNA expression of glucose transporter type 4 (GLUT4) in soleus muscle and epididymal adipose tissue as well as mRNA expression of H2S-producing enzymes in the liver, soleus muscle, and epididymal adipose tissue were measured at the end of the study. RESULTS: Compared to the controls, HFD and STZ treated rats developed metabolic dysfunction. Nitrite treatment improved carbohydrate metabolism, liver function, and oxidative stress indices whereas NaSH treatment per se had no significant effects. However, co-administration of NaSH and nitrite resulted in further improvement in serum insulin level, GTT, PTT, liver function, oxidative stress, protein level and mRNA expression of GLUT4, as well as mRNA expression of H2S-producing enzymes in diabetic rats. CONCLUSION: Low dose of NaSH per se had no effect on carbohydrate metabolism while it potentiated the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats. These favorable effects were associated with decreased oxidative stress and increased GLUT4 expression in insulin-sensitive tissues as well as improvement of liver function.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Sulfeto de Hidrogênio/metabolismo , Nitritos/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Masculino , Ratos , Ratos Wistar
19.
Molecules ; 24(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621352

RESUMO

Hydrogen sulfide (H2S) is involved in the pathophysiology of type 2 diabetes. Inhibition and stimulation of H2S synthesis has been suggested to be a potential therapeutic approach for type 2 diabetes. The aim of this study was therefore to determine the effects of long-term sodium hydrosulfide (NaSH) administration as a H2S releasing agent on carbohydrate metabolism in type 2 diabetic rats. Type 2 diabetes was established using high fat-low dose streptozotocin. Rats were treated for 9 weeks with intraperitoneal injections of NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg). Serum glucose was measured weekly for one month and then at the end of the study. Serum insulin was measured before and after the treatment. At the end of the study, glucose tolerance, pyruvate tolerance and insulin secretion were determined and blood pressure was measured. In diabetic rats NaSH at 1.6⁻5.6 mg/kg increased serum glucose (11%, 28%, and 51%, respectively) and decreased serum insulin, glucose tolerance, pyruvate tolerance and in vivo insulin secretion. In controls, NaSH only at 5.6 mg/kg increased serum glucose and decreased glucose tolerance, pyruvate tolerance and insulin secretion. Chronic administration of NaSH in particular at high doses impaired carbohydrate metabolism in type 2 diabetic rats.


Assuntos
Metabolismo dos Carboidratos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , Obesidade/tratamento farmacológico , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Teste de Tolerância a Glucose , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Masculino , Ácido Pirúvico/metabolismo , Ratos , Estreptozocina/metabolismo
20.
Bioorg Med Chem Lett ; 25(20): 4677-82, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26323873

RESUMO

We recently reported the synthesis of NOSH-aspirin, a novel hybrid compound capable of releasing both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e., ortho-NOSH-aspirin. Here we report on the synthesis of meta- and para-NOSH-aspirins. We also made a head-to-head evaluation of the effects of these three positional isomers of NOSH-aspirin on colon cancer cell kinetics and induction of reactive oxygen species, which in recent years has emerged as a key event in causing cancer cell regression. Electron donating/withdrawing groups incorporated about the benzoate moiety significantly affected the potency of these compounds with respect to colon cancer cell growth inhibition.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Aspirina/análogos & derivados , Dissulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Aspirina/síntese química , Aspirina/química , Aspirina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dissulfetos/síntese química , Dissulfetos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Estrutura Molecular , Nitratos/síntese química , Nitratos/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA