Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Cell Physiol ; 236(5): 3946-3962, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33164232

RESUMO

The epigenome has an essential role in orchestrating transcriptional activation and modulating key developmental processes. Previously, we developed a library of pyrrole-imidazole polyamides (PIPs) conjugated with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, for the purpose of sequence-specific modification of epigenetics. Based on the gene expression profile of SAHA-PIPs and screening studies using the α-myosin heavy chain promoter-driven reporter and SAHA-PIP library, we identified that SAHA-PIP G activates cardiac-related genes. Studies in mouse ES cells showed that SAHA-PIP G could enhance the generation of spontaneous beating cells, which is consistent with upregulation of several cardiac-related genes. Moreover, ChIP-seq results confirmed that the upregulation of cardiac-related genes is highly correlated with epigenetic activation, relevant to the sequence-specific binding of SAHA-PIP G. This proof-of-concept study demonstrating the applicability of SAHA-PIP not only improves our understanding of epigenetic alterations involved in cardiomyogenesis but also provides a novel chemical-based strategy for stem cell differentiation.


Assuntos
DNA/metabolismo , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Organogênese , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Endoderma/metabolismo , Epigênese Genética/efeitos dos fármacos , Células HEK293 , Humanos , Imidazóis/farmacologia , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Motivos de Nucleotídeos/genética , Nylons/farmacologia , Pirróis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
Org Biomol Chem ; 19(47): 10444-10454, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812828

RESUMO

The sesquiterpene zerumbone was treated with HCl in ethyl acetate under the light-protected condition, and the time-dependent conversions were analyzed by gas chromatography. Nine products were isolated, and their structures were revealed by several NMR measurements such as 1H NMR, 13C{1H} NMR, distortionless enhancement by polarization transfer (DEPT)-135, 1H-1H correlation spectroscopy (COSY), 1H-13C heteronuclear multiple quantum coherence (HMQC), and 1H-13C heteronuclear multiple bond coherence (HMBC). The X-ray crystallography determined the stereochemistries of the three products and the two derivatives. After all, this acidic reaction was found to provide the (2Z,6E,10E)-isomer, the two HCl adducts, the two 7,6-bicyclic compounds, the valence isomers cycloheptatriene and norcaradiene, and the two dihydronaphthalenes. Based on the product analyses of the reactions from the isolated intermediates as well as the mechanistic considerations, these products were arranged into two paths: one of the paths ended in the two dihydronaphthalenes the same as previously reported under the Lewis acid condition; the other ended in the 7,6-bicyclic compound, the epimer of which was known. In addition, density functional theory (DFT) calculations indicated that the (2Z,6E,10E)-isomer was more stable than the (2E,6E,10Z)-isomer as well as that the activation energy for the isomerization at the C2-C3 double bond decreased to half by protonation. The closely examined reaction mechanisms under the simple acidic condition were established upon the intensive characterization of the intermediates and products, and these findings would add to the attractive value of zerumbone and would help understand the unknown biosynthetic pathway around sesquiterpenoids.


Assuntos
Sesquiterpenos
3.
J Org Chem ; 85(13): 8371-8386, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32524816

RESUMO

Diversity-oriented synthesis (DOS) is an effective strategy for the quick creation of diverse and high three-dimensional compounds from simple starting materials. The selection of a starting material is the key to constructing useful, chemically diverse compound libraries for the development of new drugs. Here, we report a novel, general, and facile strategy for the creation of diverse compounds with high structural diversity from readily available natural products, such as zerumbone, as the synthetic starting material. Zerumbone is the major component of the essential oil from wild ginger, Zingiber zerumbet Smith. It is noteworthy that zerumbone has a powerful latent reactivity, partly because of its three double bonds, two conjugated and one isolated, and a double conjugated carbonyl group in an 11-membered ring structure. In fact, zerumbone has been shown to be a successful example of natural material-related DOS (NMRDOS). We will report that zerumbone can be converted in one chemical step from four zerumbone derivatives into rare and markedly different scaffolds by transannulation.

4.
Bioorg Med Chem ; 26(1): 1-7, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29224995

RESUMO

N-Methylpyrrole-N-methylimidazole (PI) polyamides are a class of DNA minor groove binders with DNA sequence-specificity. DNA-alkylating PI polyamide conjugates are attractive candidates as anticancer drugs acting through DNA damage and its subsequent inhibition of cell proliferation. One example is a chlorambucil-PI polyamide conjugate targeting the runt-related transcription factor (RUNX) family. RUNX1 has pro-oncogenic properties in acute myeloid leukemia, and recently the chlorambucil-PI polyamide conjugate was demonstrated to have anticancer effects. Herein, we apply another DNA-alkylating agent, seco-CBI, to target the consensus sequence of the RUNX family. Two types of CBI conjugates were prepared and their binding properties were characterized by Bind-n-Seq analysis using a high-throughput sequencer. The sequencing data were analyzed by two methods, MERMADE and our new MR (motif identification with a reference sequence), and the resultant binding motif logos were as predicted from the pairing rules proposed by Dervan et al. This is the first report to employ the MR method on alkylating PI polyamide conjugates. Moreover, cytotoxicity of conjugates 3 and 4 against a human non-small cell lung cancer, A549, were examined to show promising IC50s of 120 nm and 63 nm, respectively. These findings suggest seco-CBI-PI polyamide conjugates are candidates for oncological therapy.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala , Imidazóis/farmacologia , Nylons/farmacologia , Pirróis/farmacologia , Alquilação , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Estrutura Molecular , Nylons/química , Pirróis/química , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 44(9): 4014-24, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27098039

RESUMO

Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2: showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing.


Assuntos
Alquilantes/química , DNA/química , Imidazóis/química , Nylons/química , Pirróis/química , Receptor ErbB-2/genética , Alquilação , Sequência de Bases , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Regiões Promotoras Genéticas/genética
6.
Chembiochem ; 18(2): 166-170, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27862755

RESUMO

Although DNA interstrand crosslinking (ICL) agents are widely used as antitumor drugs, DNA sequence-specific ICL agents are quite rare. In this study, H-pin imidazole-pyrrole polyamide 1-(chloromethyl)-2,3-dihydro-1H-benzo[e]indol-5-ol (seco-CBI) conjugates that produce sequence-specific DNA ICLs were designed and synthesized. Conjugates with H-pin polyamide and seco-CBI moieties were constructed to recognize a 7 bp DNA sequence, and their reactivity and selectivity in DNA alkylation were evaluated by using high-resolution denaturing gel electrophoresis and sequence-specific plasmid cleavage. One conjugate (6), which contained a chiral (S)-seco-CBI, exhibited greater sequence-specific ICL activity toward the target DNA sequence and was cytotoxic to a cancer cell line. Molecular modeling studies indicated that the greater activity of 6 resulted from the relative orientation of the cyclopropane group in the (S)-CBI unit.


Assuntos
DNA/química , Indóis/química , Substâncias Intercalantes/química , Alquilação , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/toxicidade , Sequência de Bases , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Imidazóis/química , Indóis/toxicidade , Substâncias Intercalantes/toxicidade , Plasmídeos/genética , Plasmídeos/metabolismo , Pirróis/química , Estereoisomerismo
7.
Chembiochem ; 17(18): 1752-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387250

RESUMO

Many long pyrrole-imidazole polyamides (PIPs) have been synthesized in the search for higher specificity, with the aim of realizing the great potential of such compounds in biological and clinical areas. Among several types of PIPs, we designed and synthesized hairpin and cyclic PIPs targeting identical sequences. Bind-n-Seq analysis revealed that both bound to the intended sequences. However, adenines in the data analyzed by the previously reported Bind-n-Seq method appeared to be significantly higher in the motif ratio than thymines, even though the PIPs were not expected to distinguish A from T. We therefore examined the experimental protocol and analysis pipeline in detail and developed a new method based on Bind-n-Seq motif identification with a reference sequence (Bind-n-Seq-MR). High-throughput sequence analysis of the PIP-enriched DNA data by Bind-n-Seq-MR presented A and T comparably. Surface plasmon resonance assays were performed to validate the new method.


Assuntos
DNA/química , DNA/genética , Imidazóis/química , Nylons/química , Pirróis/química , Sítios de Ligação , Conformação Molecular , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
8.
Nat Chem Biol ; 10(7): 574-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24838012

RESUMO

Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Pentoxil (Uracila)/análogos & derivados , Proteínas Proto-Oncogênicas/metabolismo , Timina/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Isótopos de Carbono , Montagem e Desmontagem da Cromatina , Cromatografia Líquida , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/citologia , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Oxirredução , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas por Ionização por Electrospray , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Bioorg Med Chem ; 24(16): 3603-11, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301681

RESUMO

With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive Py or Im rings separated by a ß-alanine to match the curvature and twist of long DNA helices. Polyamides 2 and 3 contained an 8-amino-3,6-dioxaoctanoic acid (AO) unit, which has previously only been used as a linker within linear Py-Im polyamides or between Py-Im hairpin motifs for tandem hairpin. It is demonstrated herein that AO also functions as a linker element that can extend to 2-bp in hairpin motifs. Notably, although the AO-containing unit can fail to bind the expected sequence, polyamide 4, which has two AO units facing each other in a hairpin form, successfully showed the expected motif and a KD value of 16nM was recorded. Polyamide 5, containing a ß-alanine-ß-alanine unit instead of the AO of polyamide 2, was synthesized for comparison. The aqueous solubilities and nuclear localization of three of the polyamides were also examined. The results suggest the possibility of applying the AO unit in the core of Py-Im polyamide compounds.


Assuntos
Caprilatos/química , DNA/química , Imidazóis/química , Nylons/química , Pirróis/química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
10.
Chembiochem ; 16(10): 1497-501, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25900774

RESUMO

Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs).


Assuntos
Acetilação/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Histonas/metabolismo , Pirróis/farmacologia , Retina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ativação Transcricional/efeitos dos fármacos , Linhagem Celular , Epigênese Genética/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Histonas/genética , Humanos , Imidazóis/química , Imidazóis/farmacologia , Pirróis/química , Doenças Retinianas/genética , Bibliotecas de Moléculas Pequenas/química
11.
Chemistry ; 21(42): 14996-5003, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26306751

RESUMO

Mutation of KRAS is a key step in many cancers. Mutations occur most frequently at codon 12, but the targeting of KRAS is notoriously difficult. We recently demonstrated selective reduction in the volume of tumors harboring the KRAS codon 12 mutation in a mouse model by using an alkylating hairpin N-methylpyrrole-N-methylimidazole polyamide seco-1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one conjugate (conjugate 4) designed to target the KRAS codon 12 mutation sequence. Herein, we have compared the alkylating activity of 4 against three other conjugates that were also designed to target the KRAS codon 12 mutation sequence. Conjugate 4 displayed greater affinity for the G12D mutation sequence than for the G12V sequence. A computer-minimized model suggested that conjugate 4 could bind more efficiently to the G12D match sequence than to a one-base-pair mismatch sequence. Conjugate 4 was modified for next-generation sequencing. Bind-n-Seq analysis supported the evidence showing that conjugate 4 could target the G12D mutation sequence with exceptionally high affinity and the G12V mutation sequence with much higher affinity than that for the wild-type sequence.

12.
Angew Chem Int Ed Engl ; 54(30): 8700-3, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26094767

RESUMO

Synthetic dual-function ligands targeting specific DNA sequences and histone-modifying enzymes were applied to achieve regulatory control over multi-gene networks in living cells. Unlike the broad array of targeting small molecules for histone deacetylases (HDACs), few modulators are known for histone acetyltransferases (HATs), which play a central role in transcriptional control. As a novel chemical approach to induce selective HAT-regulated genes, we conjugated a DNA-binding domain (DBD) "I" to N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB), an artificial HAT activator. In vitro enzyme activity assays and microarray studies were used to demonstrate that distinct functional small molecules could be transformed to have identical bioactivity when conjugated with a targeting DBD. This proof-of-concept synthetic strategy validates the switchable functions of HDACs and HATs in gene regulation and provides a molecular basis for developing versatile bioactive ligands.


Assuntos
Benzamidas/química , Benzamidas/farmacologia , DNA/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular , DNA/genética , Epigênese Genética/efeitos dos fármacos , Histona Acetiltransferases/química , Histonas/genética , Histonas/metabolismo , Humanos , Estrutura Terciária de Proteína
13.
Nucleic Acids Res ; 40(22): 11510-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042247

RESUMO

N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides are small organic molecules that bind to DNA with sequence specificity and can be used as synthetic DNA-binding ligands. In this study, five hairpin eight-ring Py-Im polyamides 1-5 with different number of Im rings were synthesized, and their binding behaviour was investigated with surface plasmon resonance assay. It was found that association rate (k(a)) of the Py-Im polyamides with their target DNA decreased with the number of Im in the Py-Im polyamides. The structures of four-ring Py-Im polyamides derived from density functional theory revealed that the dihedral angle of the Py amide carbonyl is 14∼18°, whereas that of the Im is significantly smaller. As the minor groove of DNA has a helical structure, planar Py-Im polyamides need to change their conformation to fit it upon binding to the minor groove. The data explain that an increase in planarity of Py-Im polyamide induced by the incorporation of Im reduces the association rate of Py-Im polyamides. This fundamental knowledge of the binding of Py-Im polyamides to DNA will facilitate the design of hairpin Py-Im polyamides as synthetic DNA-binding modules.


Assuntos
DNA/química , Imidazóis/química , Nylons/química , Pirróis/química , Modelos Moleculares , Conformação de Ácido Nucleico , Nylons/síntese química , Ressonância de Plasmônio de Superfície , Torção Mecânica
14.
J Am Chem Soc ; 135(39): 14593-9, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23980549

RESUMO

Three new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C-C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C-C bond cleavage reactions require the presence of high concentration of thiols and are acid catalyzed. While hmdC dehydroxymethylates very slowly, fdC and especially cadC react considerably faster to dC. Thiols are active site residues in many DNA modifiying enzymes indicating that such enzymes could play a role in an alternative active DNA demethylation mechanism via deformylation of fdC or decarboxylation of cadC. Quantum-chemical calculations support the catalytic influence of a thiol on the C-C bond cleavage.


Assuntos
Citosina/análogos & derivados , Compostos de Sulfidrila/química , 5-Metilcitosina/análogos & derivados , Ácidos Carboxílicos/química , Citosina/química , Desaminação , Oxirredução
15.
Bioorg Med Chem ; 21(17): 5436-41, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810670

RESUMO

N-Methylpyrrole (Py)-N-methylimidazole (Im) polyamides are small organic molecules that can recognize predetermined DNA sequences with high sequence specificity. As many eukaryotic promoter regions contain highly GC-rich sequences, it is valuable to synthesize and characterize Py-Im polyamides that recognize GC-rich motifs. In this study, we synthesized four hairpin Py-Im polyamides 1-4, which recognize 5'-GCGC-3' and investigated their binding behavior with surface plasmon resonance assay. Py-Im polyamides 2-4 contain two, one, and one ß-alanine units, replacing the Py units of 1, respectively. The binding affinities of 2-4 to the target DNA increased 430, 390, and 610-fold, respectively, over that of 1. The association and dissociation rates of 2 to the target DNA were improved by 11 and 37-fold, respectively, compared with those of 1. Interestingly, the association and dissociation rates of 3 and 4 were higher than those of 2, even though the binding affinities of 2, 3, and 4 to the target DNA were comparable to each other. The binding affinity of 2 to DNA with a 2bp mismatch was reduced by 29-fold, compared with that to the matched DNA. Moreover, the binding affinities of 3 and 4 to the same mismatched DNA were reduced by 270 and 110-fold, respectively, indicating that 3 and 4 have greater specificities than 2 and are suitable as DNA-binding modules for engineered epigenetic regulation.


Assuntos
DNA/metabolismo , Imidazóis/química , Nylons/química , Pirróis/química , beta-Alanina/química , Pareamento Incorreto de Bases , Sequência de Bases , DNA/química , Conformação de Ácido Nucleico , Nylons/síntese química , Ressonância de Plasmônio de Superfície
16.
Sci Adv ; 9(8): eade2035, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827365

RESUMO

Consecutive guanine RNA sequences can adopt quadruple-stranded structures, termed RNA G-quadruplexes (rG4s). Although rG4-forming sequences are abundant in transcriptomes, the physiological roles of rG4s in the central nervous system remain poorly understood. In the present study, proteomics analysis of the mouse forebrain identified DNAPTP6 as an RNA binding protein with high affinity and selectivity for rG4s. We found that DNAPTP6 coordinates the assembly of stress granules (SGs), cellular phase-separated compartments, in an rG4-dependent manner. In neurons, the knockdown of DNAPTP6 diminishes the SG formation under oxidative stress, leading to synaptic dysfunction and neuronal cell death. rG4s recruit their mRNAs into SGs through DNAPTP6, promoting RNA self-assembly and DNAPTP6 phase separation. Together, we propose that the rG4-dependent phase separation of DNAPTP6 plays a critical role in neuronal function through SG assembly.


Assuntos
Quadruplex G , RNA , Animais , Camundongos , RNA/química , Grânulos de Estresse , RNA Mensageiro/genética , Neurônios/metabolismo
17.
J Am Chem Soc ; 134(10): 4654-60, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22320236

RESUMO

We demonstrate a novel strategy for visualizing sequence-selective alkylation of target double-stranded DNA (dsDNA) using a synthetic pyrrole-imidazole (PI) polyamide in a designed DNA origami scaffold. Doubly functionalized PI polyamide was designed by introduction of an alkylating agent 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) and biotin for sequence-selective alkylation at the target sequence and subsequent streptavidin labeling, respectively. Selective alkylation of the target site in the substrate DNA was observed by analysis using sequencing gel electrophoresis. For the single-molecule observation of the alkylation by functionalized PI polyamide using atomic force microscopy (AFM), the target position in the dsDNA (∼200 base pairs) was alkylated and then visualized by labeling with streptavidin. Newly designed DNA origami scaffold named "five-well DNA frame" carrying five different dsDNA sequences in its cavities was used for the detailed analysis of the sequence-selectivity and alkylation. The 64-mer dsDNAs were introduced to five individual wells, in which target sequence AGTXCCA/TGGYACT (XY = AT, TA, GC, CG) was employed as fully matched (X = G) and one-base mismatched (X = A, T, C) sequences. The fully matched sequence was alkylated with 88% selectivity over other mismatched sequences. In addition, the PI polyamide failed to attach to the target sequence lacking the alkylation site after washing and streptavidin treatment. Therefore, the PI polyamide discriminated the one mismatched nucleotide at the single-molecule level, and alkylation anchored the PI polyamide to the target dsDNA.


Assuntos
DNA/química , Imidazóis/química , Nylons/química , Pirróis/química , Alquilação , Sequência de Bases , Microscopia de Força Atômica
19.
RSC Adv ; 12(24): 15083-15090, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693230

RESUMO

Fructose is widely used in the food industry. However, it may be involved in diseases by generating harmful advanced glycation end-products. We have designed and synthesized a novel fluorescent probe for fructose detection by combining a phenylboronic acid group with a BODIPY-based hydrophobicity probe. This probe showed a linear fluorescence response to d-fructose concentration in the range of 100-1000 µM, with a detection limit of 32 µM, which is advantageous for the simple and sensitive determination of fructose.

20.
Nucleic Acid Ther ; 32(5): 438-447, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35404139

RESUMO

In this study, the efficiency of RNA interference of small interfering RNAs (siRNAs) bearing 5'-O-methyl-2'-deoxythymidine (X) and 5'-amino-2', 5'-dideoxythymidine (Z) at the 5'-end of the sense strand and the antisense strand of siRNA was investigated in HeLa cells stably expressing enhanced green fluorescent protein. The results indicated that when one strand of siRNA was modified with X or Z and the other was unmodified, the X or Z modification was predominant in the process of strand selection and the unmodified strand was selected as a guide strand. When both strands are modified with X or Z, the modified antisense strand with X or Z will be selected as a guide strand with a certain probability. The resulting mature RNA-induced silencing complex exerted reduced, but still moderate silencing activity remained. These results suggest that the modification of the sense strand with X or Z eliminates the off-target effects caused by the sense strand without affecting the silencing efficiency of the siRNA.


Assuntos
RNA de Cadeia Dupla , Complexo de Inativação Induzido por RNA , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células HeLa , Interferência de RNA , Complexo de Inativação Induzido por RNA/metabolismo , Timidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA