Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(3): 546-557, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38126407

RESUMO

Amphiphilic triblock copolymers, polyglycidol-polystyrene-polyglycidol (PGL-PS-PGL), were synthesised via anionic polymerization starting from the synthesis of a polystyrene macroinitiator with 60 styrene units in the block terminated by ethylene oxide. Poly(ethoxyethyl glycidyl ether) blocks of different lengths were created on both sides of the macroinitiator. By removing the ethoxyethyl blocking groups, PGL-PS-PGL copolymers containing polyglycidol blocks with DP 11, 23, 44 and 63 were received. Their structures were determined by NMR and FTIR. The hydrophilicity of PLG-PS-PGL films was studied upon exposure to water vapour. To perform the copolymers' aggregation in water, the samples were dialysed from DMF into water. The critical concentration of their micellisation (CMC) was determined by measuring the absorbance of the 1,6-diphenylhexa-1,3,5-triene (DPH) probe and the intensity of light scattered by the copolymers' solution as a function of concentration. CMC values increased with increasing the number of hydrophilic glycidol units in the copolymer chain. The sizes of aggregates formed slightly above the critical concentration were measured by dynamic light scattering (DLS), and particles were imaged by cryo-TEM. Cryo-TEM pictures showed the presence of regular micelles in copolymer dispersions. For copolymers with shorter PGL chains aggregated partices were detected. Moreover, cryo-TEM demonstrated that the copolymers with a polyglycidol block of DP = 63 formed regular spherical micelles that formed 2D ordered organisation on the surface. X-ray measurements showed the formation of a partially crystallised PS core in the micelle's interior. The aggregates of all copolymers were stable. Their sizes did not change after one year of storage. The particles did not disassociate even after diluting their dispersions to a concentration 10 times lower than the critical concentration.

2.
Polymers (Basel) ; 15(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447600

RESUMO

Gel dressings, composed of polymers both natural and synthetic, are successfully used in the treatment of burn wounds. They protect the burn wound site against adverse external factors, ensure an adequate level of tissue hydration, have soothing and pain-relieving properties, and also support the healing process and reduce the risk of pathological scars. Another promising material that can be used in the wound-healing process is an amnion membrane. Due to its valuable properties such as protecting the body against bacterial infections and permeability to nutrition, it has found usage in different brands of medicine. In this work, we have combined the beneficial properties of hydrogels and amnion in order to make the laminar dressing that may serve for wound healing. For that purpose, the physically crosslinked cryogel of poly(vinyl alcohol) (PVA) was covered with an amnion membrane. Subsequently, gamma irradiation was performed, leading to the simultaneous internal crosslinking of the hydrogel, its permanent bonding with the amnion, and dressing sterilization. The physicochemical properties of the dressing including gel fraction, swelling, and hardness were studied. Biological tests such as the MTT assay, antimicrobial activity, and histopathological examination confirmed that the obtained material constituted a promising candidate for further, more in-depth studies aiming at wound dressing application.

3.
Polymers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054660

RESUMO

In this paper, an original method of synthesis of Coil-Brush amphiphilic polystyrene-b-(polyglycidol-g-polyglycidol) (PS-b-(PGL-g-PGL)) block copolymers was developed. The hypothesis that their hydrophilicity and micellization can be controlled by polyglycidol blocks architecture was verified. The research enabled comparison of behavior in water of PS-b-PGL copolymers and block-brush copolymers PS-b-(PGL-g-PGL) with similar composition. The Coil-Brush copolymers were composed of PS-b-PGL linear core with average DPn of polystyrene 29 and 13 of polyglycidol blocks. The DPn of polyglycidol side blocks of coil-b-brush copolymers were 2, 7, and 11, respectively. The copolymers were characterized by 1H and 13C NMR, GPC, and FTIR methods. The hydrophilicity of films from the linear and Coil-Brush copolymers was determined by water contact angle measurements in static conditions. The behavior of Coil-Brush copolymers in water and their critical micellization concentration (CMC) were determined by UV-VIS using 1,6-diphenylhexa-1,3,5-trien (DPH) as marker and by DLS. The CMC values for brush copolymers were much higher than for linear species with similar PGL content. The results of the copolymer film wettability and the copolymer self-assembly studies were related to fraction of hydrophilic polyglycidol. The CMC for both types of polymers increased exponentially with increasing content of polyglycidol.

4.
Polymers (Basel) ; 13(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379398

RESUMO

Thermoresponsive polymers are a promising material for drug nanocarrier preparation, which makes the study of their aggregation in physiological conditions very important. In this paper, the thermal behaviour of the thermoresponsive polymers poly(N-isopropylacrylamide), poly(2-isopropyl-2-oxazoline-co-2-n-propyl-2-oxazoline) and poly[(2-hydroxyethyl methacrylate)-co-oligo(ethylene glycol) methyl ether methacrylate] were studied in phosphate buffer (PBS) and solutions of its salts in concentration as in PBS. The thermal response of the polymers was measured using UV-Vis and dynamic light scattering (DLS). The salts shifted the cloud point temperature (TCP) of the (co)polymers to higher values compared to the TCP of aqueous polymer solutions. In PBS and NaCl solutions, all polymers exhibited an unexpected and previously unreported transmittance profile. During heating, an additional aggregation of polymers appeared above the TCP accompanied by the formation of a precipitate. In monosodium phosphate solutions and pure water, the studied polymers showed lower critical solution temperature (LCST-type) behaviour. DLS measurements showed that a salt influenced the size of the resulting polymer particles. The sizes and stability of particles depended on the heating rate. In PBS and NaCl solutions, the size of particles in the dispersion decreased above 60 °C, and the precipitate appeared on the bottom of the cuvette. The additional aggregation of polymer and its falling out of solution may hinder the removal of carriers from the body and has to be taken into account when preparing nanocarriers.

5.
Eur J Pharm Biopharm ; 154: 317-329, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717390

RESUMO

Biodegradable triblock copolymer poly(ethylene glycol)-b-polycarbonate-b-oligo([R]-3-hydroxybutyrate) was prepared via metal-free ring-opening polymerization of ketal protected six-membered cyclic carbonate followed by esterification with bacterial oligo([R]-3-hydroxybutyrate) (oPHB). Amphiphilic triblock copolymer self-organizes into micelles with a diameter of ~25 nm. Acid-triggered hydrolysis of ketal groups to two hydroxyl groups causes an increase in hydrophilicity of the hydrophobic micelle core, resulting in the micelles swell and drug release. oPHB was added as core-forming block to increase the stability of prepared micelles in all pH (7.4, 6.4, 5.5) studied. Doxorubicin and 8-hydroxyquinoline glucose- and galactose conjugates were loaded in the micelles. In vitro drug release profiles in PBS buffers with different pH showed that a small amount of loaded drug was released in PBS at pH 7.4, while the drug was released much faster at pH 5.5. MTT assay showed that the blank micelles were non-toxic to different cell lines, while glycoconjugates-loaded micelles, showed significantly increased ability to inhibit the proliferation of MCF-7 and HCT-116 cells compared to free glycoconjugates. The glycoconjugation of anti-cancer drugs and pH-responsive nanocarriers have separately shown great potential to increase the tumor-targeted drug delivery efficiency. The combination of drug glycoconjugation and the use of pH-responsive nanocarrier opens up new possibilities to develop novel strategies for efficient tumor therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Glicoconjugados/metabolismo , Micelas , Oxiquinolina/metabolismo , Efeito Warburg em Oncologia/efeitos dos fármacos , Implantes Absorvíveis , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Glicoconjugados/administração & dosagem , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Oxiquinolina/administração & dosagem
6.
RSC Adv ; 9(70): 40966-40974, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540067

RESUMO

Random, thermoresponsive copolymers of 2-hydroxyethyl methacrylate (HEMA) and oligo(ethylene glycol) methyl ether methacrylate M n = 300 (OEGMA) were synthesized via atom transfer radical polymerization (ATRP) in a DMSO/H2O solvent mixture. Reactivity ratios were determined by the extended Kelen-Tudos method and found to be close to 1. Studies confirmed the randomness of the obtained copolymers. The thermoresponsiveness in water and in phosphate buffer (PBS) solutions and the influence of copolymer composition and solution concentration on the cloud point temperature (T cp) were investigated. Phase transitions in water solutions were reversible and narrow. The response of P(HEMA-co-OEGMA) to temperature could be adjusted in the range from 66.5 °C to 21.5 °C by changing the HEMA content. In PBS solutions, significant differences in the heating/cooling cycle were observed for all investigated concentrations. The presence of kosmotropic salts in PBS decreased the T cp value and caused thermal aggregation of chains to form a macroscopic aggregate at temperatures above the T cp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA