Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 8(4): e1002665, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22532802

RESUMO

Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , África Subsaariana , Animais , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/prevenção & controle , Masculino , Estrutura Terciária de Proteína , Coelhos
2.
Malar J ; 7: 248, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19055715

RESUMO

BACKGROUND: Malaria parasite infectivity to mosquitoes has been measured in a variety of ways and setting, includind direct feeds of and/or membrane feeding blood collected from randomly selected or gametocytemic volunteers. Anopheles gambiae s.l is the main vector responsible of Plasmodium falciparum transmission in Bancoumana and represents about 90% of the laboratory findings, whereas Plasmodium malariae and Plasmodium ovale together represent only 10%. MATERIALS AND METHODS: Between August 1996 and December 1998, direct and membrane feeding methods were compared for the infectivity of children and adolescent gametocyte carriers to anopheline mosquitoes in the village of Bancoumana in Mali. Gametocyte carriers were recruited twice a month through a screening of members of 30 families using Giemsa-stained thick blood smears. F1 generation mosquitoes issued from individual female wild mosquitoes from Bancoumana were reared in a controlled insectary conditions and fed 5% sugar solution in the laboratory in Bamako, until the feeding day when they are starved 12 hours before the feeding experiment. These F1 generation mosquitoes were divided in two groups, one group fed directly on gametocyte carriers and the other fed using membrane feeding method. RESULTS: Results from 372 Plasmodium falciparum gametocyte carriers showed that children aged 4-9 years were more infectious than adolescents (p = 0.039), especially during the rainy season. Data from 35 carriers showed that mosquitoes which were used for direct feeding were about 1.5 times more likely to feed (p < 0.001) and two times more likely to become infected, if they fed (p < 0.001), than were those which were used for membrane feeding. Overall, infectivity was about three-times higher for direct feeding than for membrane feeding (p < 0.001). CONCLUSION: Although intensity of infectivity was lower for membrane feeding, it could be a surrogate to direct feeding for evaluating transmission-blocking activity of candidate malaria vaccines. An optimization of the method for future trials would involve using about three-times more mosquitoes than would be used for direct feeding.


Assuntos
Anopheles/parasitologia , Portador Sadio/transmissão , Insetos Vetores/parasitologia , Malária Falciparum/transmissão , Parasitemia/parasitologia , Plasmodium falciparum/patogenicidade , Adolescente , Animais , Anopheles/fisiologia , Portador Sadio/parasitologia , Criança , Pré-Escolar , Técnicas de Laboratório Clínico , Comportamento Alimentar , Feminino , Humanos , Insetos Vetores/fisiologia , Malária Falciparum/parasitologia , Masculino , Mali/epidemiologia , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA