Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Arch Toxicol ; 94(11): 3877-3891, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32691075

RESUMO

Organophosphorus (OP) compounds inhibit central and peripheral acetylcholinesterase (AChE) activity, overstimulating cholinergic receptors and causing autonomic dysfunction (e.g., bronchoconstriction, excess secretions), respiratory impairment, seizure and death at high doses. Current treatment for OP poisoning in the United States includes reactivation of OP-inhibited AChE by the pyridinium oxime 2-pyridine aldoxime (2-PAM). However, 2-PAM has a narrow therapeutic index and its efficacy is confined to a limited number of OP agents. The bis-pyridinium oxime MMB4, which is a more potent reactivator than 2-PAM with improved pharmaceutical properties and therapeutic range, is under consideration as a potential replacement for 2-PAM. Similar to other pyridinium oximes, high doses of MMB4 lead to off-target effects culminating in respiratory depression and death. To understand the toxic mechanisms contributing to respiratory depression, we evaluated the effects of MMB4 (0.25-16 mM) on functional and neurophysiological parameters of diaphragm and limb muscle function in rabbits and rats. In both species, MMB4 depressed nerve-elicited muscle contraction by blocking muscle endplate nicotinic receptor currents while simultaneously prolonging endplate potentials by inhibiting AChE. MMB4 increased quantal content, endplate potential rundown and tetanic fade during high frequency stimulation in rat but not rabbit muscles, suggesting species-specific effects on feedback mechanisms involved in sustaining neurotransmission. These data reveal multifactorial effects of MMB4 on cholinergic neurotransmission, with the primary toxic modality being reduced muscle nicotinic endplate currents. Evidence of species-specific effects on neuromuscular function illustrates the importance of comparative toxicology when studying pyridinium oximes and, by inference, other quaternary ammonium compounds.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Músculos/efeitos dos fármacos , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/efeitos adversos , Transmissão Sináptica/efeitos dos fármacos , Animais , Reativadores da Colinesterase/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Masculino , Compostos de Pralidoxima/uso terapêutico , Coelhos , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Especificidade da Espécie
2.
Chirality ; 26(12): 817-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298066

RESUMO

Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents.


Assuntos
Substâncias para a Guerra Química/isolamento & purificação , Cromatografia com Fluido Supercrítico/métodos , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Espectrometria de Massas , Organofosfatos/análise , Organofosfatos/química , Organofosfatos/isolamento & purificação , Compostos Organofosforados/análise , Compostos Organofosforados/química , Compostos Organofosforados/isolamento & purificação , Sarina/análise , Sarina/química , Sarina/isolamento & purificação , Soman/análise , Soman/química , Soman/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Estereoisomerismo
3.
Proc Natl Acad Sci U S A ; 107(47): 20251-6, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059932

RESUMO

The concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g., plasma-derived butyrylcholinesterase and erythrocytic acetylcholinesterase) or nonexisting (synaptic acetylcholinesterase). Here we identify a unique form of recombinant human butyrylcholinesterase that mimics the native enzyme assembly into tetramers; this form provides extended effective pharmacokinetics that is significantly enhanced by polyethylene glycol conjugation. We further demonstrate that this enzyme (but not a G117H/E197Q organophosphorus acid anhydride hydrolase catalytic variant) can prevent morbidity and mortality associated with organophosphorous nerve agent and pesticide exposure of animal subjects of two model species.


Assuntos
Butirilcolinesterase/farmacologia , Substâncias para a Guerra Química/toxicidade , Fármacos Neuroprotetores/farmacologia , Nicotiana/metabolismo , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Animais , Butirilcolinesterase/metabolismo , Butirilcolinesterase/farmacocinética , Substâncias para a Guerra Química/metabolismo , Cromatografia Líquida de Alta Pressão , Cobaias , Humanos , Immunoblotting , Cinética , Camundongos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacocinética , Compostos Organofosforados/metabolismo , Praguicidas/metabolismo , Polietilenoglicóis/metabolismo , Engenharia de Proteínas
4.
Biochemistry ; 49(37): 7978-87, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20701311

RESUMO

Organophosphorus compounds include many synthetic, neurotoxic substances that are commonly used as insecticides. The toxicity of these compounds is due to their ability to inhibit the enzyme acetylcholine esterase. Some of the most toxic organophosphates have been adapted for use as chemical warfare agents; the most well-known are GA, GB, GD, GF, VX, and VR. All of these compounds contain a chiral phosphorus center, with the S(P) enantiomers being significantly more toxic than the R(P) enantiomers. Phosphotriesterase (PTE) is an enzyme capable of detoxifying these agents, but the stereochemical preference of the wild-type enzyme is for the R(P) enantiomers. A series of enantiomerically pure chiral nerve agent analogues containing the relevant phosphoryl centers found in GB, GD, GF, VX, and VR has been developed. Wild-type and mutant forms of PTE have been tested for their ability to hydrolyze this series of compounds. Mutant forms of PTE with significantly enhanced, as well as relaxed or reversed, stereoselectivity have been identified. A number of variants exhibited dramatically improved kinetic constants for the catalytic hydrolysis of the more toxic S(P) enantiomers. Improvements of up to 3 orders of magnitude relative to the value of the wild-type enzyme were observed. Some of these mutants were tested against racemic mixtures of GB and GD. The kinetic constants obtained with the chiral nerve agent analogues accurately predict the improved activity and stereoselectivity against the authentic nerve agents used in this study.


Assuntos
Compostos Organofosforados/química , Hidrolases de Triester Fosfórico/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Catálise , Substâncias para a Guerra Química/química , Hidrólise , Inseticidas/química , Organofosfatos/química , Hidrolases de Triester Fosfórico/química , Estereoisomerismo
5.
Biochem Pharmacol ; 171: 113670, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628910

RESUMO

Human butyrylcholinesterase (E.C. 3.1.1.8) purified from blood plasma has previously been shown to provide protection against up to five and a half times the median lethal dose of an organophosphorus nerve agent in several animal models. In this study the stoichiometric nature of the protection afforded by human butyrylcholinesterase against organophosphorus nerve agents was investigated in guinea pigs. Animals were administered human butyrylcholinesterase (26.15 mg/kg ≡ 308 nmol/kg) by the intravascular or intramuscular route. Animals were subsequently dosed with either soman or VX in accordance with a stage-wise adaptive dose design to estimate the modified median lethal dose in treated animals. Human butyrylcholinesterase (308 nmol/kg) increased the median lethal dose of soman from 154 nmol/kg to 770 nmol/kg. Comparing the molar ratio of agent molecules to enzyme active sites yielded a stoichiometric protective ratio of 2:1 for soman, likely related to the similar stereoselectivity the enzyme has compared to the toxic target, acetylcholinesterase. In contrast, human butyrylcholinesterase (308 nmol/kg) increased the median lethal dose of VX from 30 nmol/kg to 312 nmol/kg, resulting in a stoichiometric protective ratio of only 1:1, suggesting a lack of stereoselectivity for this agent.


Assuntos
Butirilcolinesterase/administração & dosagem , Substâncias para a Guerra Química/intoxicação , Agentes Neurotóxicos/intoxicação , Intoxicação/prevenção & controle , Animais , Área Sob a Curva , Butirilcolinesterase/sangue , Butirilcolinesterase/química , Substâncias para a Guerra Química/química , Cobaias , Humanos , Injeções Intramusculares , Injeções Intravenosas , Dose Letal Mediana , Masculino , Taxa de Depuração Metabólica , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Compostos Organotiofosforados/química , Compostos Organotiofosforados/intoxicação , Soman/química , Soman/intoxicação , Estereoisomerismo
6.
Sci Transl Med ; 11(473)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602537

RESUMO

Nerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds. However, low scavenging efficiency, unfavorable pharmacokinetics, and immunological problems have hampered the development of effective drugs. Here, we report the development and testing of a nanoparticle-based nerve agent bioscavenger (nanoscavenger) that showed long-term protection against OP intoxication in rodents. The nanoscavenger, which catalytically breaks down toxic OP compounds, showed a good pharmacokinetic profile and negligible immune response in a rat model of OP intoxication. In vivo administration of the nanoscavenger before or after OP exposure in animal models demonstrated protective and therapeutic efficacy. In a guinea pig model, a single prophylactic administration of the nanoscavenger effectively prevented lethality after multiple sarin exposures over a 1-week period. Our results suggest that the prophylactic administration of the nanoscavenger might be effective in preventing the toxic effects of OP exposure in humans.


Assuntos
Nanopartículas/química , Agentes Neurotóxicos/toxicidade , Substâncias Protetoras/farmacologia , Administração Intravenosa , Animais , Feminino , Cobaias , Masculino , Nanopartículas/administração & dosagem , Paraoxon/toxicidade , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacocinética , Ratos Sprague-Dawley , Sarina/toxicidade , Análise de Sobrevida , Fatores de Tempo , Distribuição Tecidual
7.
Chem Biol Interact ; 203(1): 177-80, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23123254

RESUMO

Human paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos. In the second model, mice were infected with an adenovirus that induced expression of HuPON1 and then exposed to sequential doses of GD, VX, or (as reported previously) diazoxon, the toxic metabolite of the OP pesticide diazinon. In both animal models, the exogenously added HuPON1 protected animals against otherwise lethal doses of the OP pesticides but not against the nerve agents. Together, the results support prior modeling and in vitro activity data which suggest that wild-type HuPON1 does not have sufficient catalytic activity to provide in vivo protection against nerve agents.


Assuntos
Arildialquilfosfatase/administração & dosagem , Substâncias para a Guerra Química/toxicidade , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Animais , Antídotos/administração & dosagem , Antídotos/farmacocinética , Arildialquilfosfatase/genética , Arildialquilfosfatase/isolamento & purificação , Arildialquilfosfatase/farmacocinética , Clorpirifos/análogos & derivados , Clorpirifos/toxicidade , Cobaias , Humanos , Masculino , Camundongos , Mariposas , Organofosfatos/toxicidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacocinética , Sarina/toxicidade , Soman/toxicidade
8.
PLoS One ; 6(3): e17441, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21445272

RESUMO

Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Substâncias para a Guerra Química/farmacocinética , Compostos Organofosforados/farmacocinética , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Substâncias para a Guerra Química/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Mutação , Compostos Organofosforados/metabolismo , Conformação Proteica
9.
Chem Biol Interact ; 187(1-3): 388-92, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20176005

RESUMO

Human serum paraoxonase-1 (HuPON1) is difficult to either purify from plasma or functionally express in high yield from recombinant sources. Here, we describe the characterization of functional HuPON1 expressed and purified from Trichoplusia ni (T. ni) larvae infected with an orally active form of baculovirus. SDS-PAGE and anti-HuPON1 Western blot analyses yielded only three bands of approximately 41, 42, and 44 kDa. MALDI-TOF confirmed the identity of each of these bands as HuPON1 with greater than 95% confidence. These isoforms result from differential glycosylation of the enzyme as indicated by peptide mapping, mass analysis, and PNGase F deglycosylation experiments. Recombinant insect-produced HuPON1 hydrolyzed phenyl acetate, paraoxon, and the nerve agents GF, VX, and VR. The enzyme had dramatic stereoselectivity for the P+ isomers of VX and VR. T. ni larvae expressing HuPON1 were remarkably resistant to the pesticide chlorpyrifos. Together, these results demonstrate that the caterpillar of the T. ni moth can be used as an expression system to produce large quantities of functional recombinant HuPON1. Insect production of HuPON1 may provide a source for both in vitro enzymatic and crystallographic studies and in vivo stability and anti-nerve agent efficacy testing.


Assuntos
Arildialquilfosfatase/biossíntese , Arildialquilfosfatase/metabolismo , Lepidópteros/genética , Animais , Arildialquilfosfatase/genética , Arildialquilfosfatase/isolamento & purificação , Baculoviridae/genética , Baculoviridae/fisiologia , Clorpirifos/metabolismo , Expressão Gênica , Humanos , Hidrólise , Cinética , Larva/genética , Larva/virologia , Lepidópteros/virologia , Compostos Organotiofosforados/química , Compostos Organotiofosforados/metabolismo , Praguicidas/metabolismo , Estereoisomerismo , Especificidade por Substrato
10.
Biochemistry ; 45(2): 402-15, 2006 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-16401071

RESUMO

Pyruvate dehydrogenase kinase (PDHK) regulates the activity of the pyruvate dehydrogenase multienzyme complex. PDHK inhibition provides a route for therapeutic intervention in diabetes and cardiovascular disorders. We report crystal structures of human PDHK isozyme 2 complexed with physiological and synthetic ligands. Several of the PDHK2 structures disclosed have C-terminal cross arms that span a large trough region between the N-terminal regulatory (R) domains of the PDHK2 dimers. The structures containing bound ATP and ADP demonstrate variation in the conformation of the active site lid, residues 316-321, which enclose the nucleotide beta and gamma phosphates at the active site in the C-terminal catalytic domain. We have identified three novel ligand binding sites located in the R domain of PDHK2. Dichloroacetate (DCA) binds at the pyruvate binding site in the center of the R domain, which together with ADP, induces significant changes at the active site. Nov3r and AZ12 inhibitors bind at the lipoamide binding site that is located at one end of the R domain. Pfz3 (an allosteric inhibitor) binds in an extended site at the other end of the R domain. We conclude that the N-terminal domain of PDHK has a key regulatory function and propose that the different inhibitor classes act by discrete mechanisms. The structures we describe provide insights that can be used for structure-based design of PDHK inhibitors.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ácido Dicloroacético/metabolismo , Dimerização , Humanos , Isoenzimas/química , Isoenzimas/fisiologia , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil , Água/metabolismo
11.
Biochemistry ; 43(42): 13432-41, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15491150

RESUMO

Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating.


Assuntos
Difosfato de Adenosina/antagonistas & inibidores , Difosfato de Adenosina/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Acetilcoenzima A/química , Acetiltransferases/química , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Ligação Competitiva , Catálise , Ácido Dicloroacético/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Ativação Enzimática , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Concentração Osmolar , Ligação Proteica , Proteínas Serina-Treonina Quinases , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/química , Especificidade por Substrato
12.
Biochemistry ; 43(42): 13442-51, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15491151

RESUMO

Pyruvate dehydrogenase kinase 2 (PDK2) activity is stimulated by NADH and NADH plus acetyl-CoA via the reduction and reductive acetylation of the lipoyl groups of the dihydrolipoyl acetyltransferase (E2) component. Elevated K(+) and Cl(-) were needed for significant stimulation. Stimulation substantially increased both k(cat) and the K(m) for ATP; the fractional stimulation increased with the level of ATP. With an E2 structure lacking the pyruvate dehydrogenase (E1) binding domain, stimulation of PDK2 was retained, the K(m) for E1 decreased, and the equilibrium dissociation constant for ATP increased but remained much lower than the K(m) for ATP. Stimulation of PDK2 activity greatly reduced the fraction of bound ADP. These results fit an ordered reaction mechanism with ATP binding before E1 and stimulation increasing the rate of dissociation of ADP. Conversion of all of the lipoyl groups in the E2 60mer to the oxidized form (E2(ox)) greatly reduced k(cat) and the K(m) of PDK2 for ATP. Retention over an extended period of time of a low portion of reduced lipoyl groups maintains E2 in a state that supported much higher PDK2 activity than short-term (5 min) reduction of a large portion of lipoyl groups of E2(ox), but reduction of E2(ox) produced a larger fold stimulation. Reduction and to a greater extent reductive acetylation increased PDK2 binding to E2; conversion to E2(ox) did not significantly hinder binding. We suggest that passing even limited reducing equivalents among lipoyl groups maintains E2 lipoyl domains in a conformation that aids kinase function.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas Quinases/metabolismo , Acetilcoenzima A/química , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Soluções Tampão , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Ácido Ditionitrobenzoico/química , Ativação Enzimática , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , NAD/química , Oxirredução , Ligação Proteica/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Deleção de Sequência , Especificidade por Substrato , Ácido Tióctico/metabolismo
13.
Eur J Biochem ; 270(6): 1050-6, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631265

RESUMO

Four pyruvate dehydrogenase kinase and two pyruvate dehydrogenase phosphatase isoforms function in adjusting the activation state of the pyruvate dehydrogenase complex (PDC) through determining the fraction of active (nonphosphorylated) pyruvate dehydrogenase component. Necessary adaptations of PDC activity with varying metabolic requirements in different tissues and cell types are met by the selective expression and pronounced variation in the inherent functional properties and effector sensitivities of these regulatory enzymes. This review emphasizes how the foremost changes in the kinase and phosphatase activities issue from the dynamic, effector-modified interactions of these regulatory enzymes with the flexibly held outer domains of the core-forming dihydrolipoyl acetyl transferase component.


Assuntos
Isoenzimas/metabolismo , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Animais , Cálcio/metabolismo , Ativação Enzimática , Isoenzimas/química , Modelos Moleculares , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases , Subunidades Proteicas , Piruvato Desidrogenase (Lipoamida)-Fosfatase/química , Piruvato Desidrogenase Quinase de Transferência de Acetil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA