Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Biometeorol ; 66(11): 2339-2355, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36129581

RESUMO

The thermal conditions that prevail in cities pose a number of challenges to urban residents and policy makers related to quality of life, health and welfare as well as to sustainable urban development. However, the changes in thermal stress due to climate change are probably not uniform among cities with different background climates. In this work, a comparative analysis of observed and projected thermal stress (cold stress, heat stress, no thermal stress) across four European cities (Helsinki, Rotterdam, Vienna, and Athens), which are representative of different geographical and climatic regions of the continent, for a recent period (1975 - 2004) and two future periods (2029 - 2058, 2069 - 2098) has been conducted. Applying a rational thermal index (Universal Thermal Climate Index) and considering two models of the EURO-CORDEX experiment (RCA4-MOHC, RCA4-MPI) under two Representative Concentration Pathways (RCP4.5, RCP8.5), the projected future changes in thermal conditions are inspected. The distribution of thermal stress in the current climate varies greatly between the cities, reflecting their climatic and urban heterogeneity. In the future climate, a reduction in the frequency of cold stress is expected across all cities, ranging between - 2.9% and - 16.2%. The projected increase in the frequency of optimal thermal conditions increases with increasing latitude, while the projected increase in the frequency of heat stress (ranging from + 0.2 to + 14.6%) decreases with increasing latitudes. Asymmetrical changes in cold- and heat-related stress between cities were found to affect the annual percentage of optimal (no thermal stress) conditions in future. Although future projections are expected to partly bridge the gap between the less-privileged cities (with respect to annual frequency of optimal thermal conditions) like Helsinki and Rotterdam and the more privileged ones like Athens, the former will still lag behind on an annual basis.


Assuntos
Mudança Climática , Transtornos de Estresse por Calor , Humanos , Cidades , Qualidade de Vida , Previsões
2.
Int J Biometeorol ; 63(9): 1251-1264, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31201549

RESUMO

Cities have been assigned as one of the most vulnerable areas with respect to heat-related risk due to global warming and rapid urban growth. The present study explores the long-term trends in thermal risk at a large urban area of the eastern Mediterranean (Athens) over a long period (1960-2017), based on hourly observations. In addition to the frequency and severity of heat stress conditions, the study further explores changes in the seasonality of heat stress. Four human thermal indices with different rationales were employed, namely the Universal Thermal Climate Index (UTCI), the Physiologically Equivalent Temperature (PET), the Heat Index (HI), and the Humidex (HD). All indices indicate a prominent increase in heat-related risk over the years. The exposure time per year under the conditions of "hot-extreme caution" (HI), "great discomfort-avoid exertion" (HD), "very strong heat stress" (UTCI), and "extreme heat stress" (PET) exhibits a statistically significant increasing trend at a rate of 0.9%/decade, 0.4%/decade, 0.3%/decade, and 0.4%/decade during 1960-2017, respectively. Even during the nighttime hours, three out of the four indices indicate that the population is exposed to significantly higher heat stress levels in the recent decades compared to the past ones. A progressive expansion of the "heat stress season" over the years was revealed, resulting to an elongation of the "hot-extreme caution" season (HI), the "great discomfort-avoid exertion" season (HD), and the "very strong heat stress" season (UTCI) by 5.6 days/decade, 11.3 days/decade, and 4.3 days/decade, respectively.


Assuntos
Clima , Transtornos de Estresse por Calor , Cidades , Temperatura Alta , Humanos , Temperatura
3.
Int J Biometeorol ; 59(2): 205-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24830755

RESUMO

Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.


Assuntos
Aclimatação , Meio Ambiente , Modelos Biológicos , Sensação Térmica , Adulto , Temperatura Corporal , Humanos , Masculino , Pele/metabolismo , Temperatura , Perda Insensível de Água
4.
Int J Biometeorol ; 56(4): 737-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21826464

RESUMO

Evidence that heat wave events are associated with poor air quality conditions and health hazards has become stronger in recent years. In this study, the impact of two heat wave episodes on human thermal discomfort and air quality is examined during summer 2007, in an industrial plain of eastern Mediterranean: the Thriassion Plain, Greece. For this purpose, two biometeorological indices-Discomfort Index (DI) and Heat Load (HL)-as well as an air quality index-Air Quality Stress Index (AQSI)-were calculated using data from seven measuring sites. A land-use map was procured in order to examine the effect of different land cover types on human thermal comfort. The results indicated high level of thermal discomfort and increased air pollution levels, while a significant correlation between the DI and the AQSI was identified.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Grécia , Temperatura Alta , Umidade , Indústrias , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Dióxido de Enxofre/análise , Vento
5.
Environ Res ; 110(2): 152-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20060520

RESUMO

Heat waves are considered to be increasing in frequency and intensity whereas they comprise a significant weather-related cause of deaths in several countries. Two heat waves occurred in Greece in summer 2007. These severe heat waves are assessed by analyzing the prevailing synoptic conditions, evaluating human thermal discomfort, through the Heat Load Index (HL), as well as investigating its interrelation of air pollutant concentrations, and the daily air quality stress index (AQSI), in the greater region of Athens (Attica), Greece. Furthermore, the relation of HL values and the number of heatstroke and heat exhaustion events recorded in public hospitals operating within the Greek National Health System is examined. Data included radiosonde measurements from the Athens airport station (LGAT), NCEP/NCAR reanalysis data in order to obtain the position of the Subtropical Jet Stream (STJ), GDAS meteorological data for back-trajectory calculation, 10-min meteorological data from 10 Hydro-Meteorological stations and mean hourly values of nitric dioxide (NO(2)), sulphur dioxide (SO(2)) and ozone (O(3)) concentrations, measured at 7 different sites, for the last 10-day period of June and July 2007. Spearman's rank correlation test was used to observe any possible correlation between HL values and air pollutant concentrations, and AQSI values. The results demonstrated different synoptic characteristics for the heat waves of June and July. In the heat wave of June, higher ambient temperatures were recorded and greater HL values were calculated. Extreme discomfort conditions were identified in both heat waves during both day-time and night-time hours. The air pollution analysis showed poor air quality conditions for the heat wave of July, while a significant correlation was found between HL values and average hourly concentrations of O(3), NO(2) and SO(2). The number of heat-affected patients reported during the June heat wave was larger.


Assuntos
Poluição do Ar , Golpe de Calor/epidemiologia , Temperatura Alta/efeitos adversos , Tempo (Meteorologia) , Poluentes Atmosféricos/análise , Grécia/epidemiologia , Humanos , Dióxido de Nitrogênio/análise , Ozônio/análise , Dióxido de Enxofre/análise
6.
Int J Biometeorol ; 53(2): 177-87, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19137329

RESUMO

During the peak of an extensive heat wave episode on 23-25 July 2007, simultaneous thermophysiological measurements were made in two non-acclimated healthy adults of different sex in a suburban area of Greater Athens, Greece. Based on experimental measurements of mean skin temperature and metabolic heat production, heat fluxes to and from the human body were calculated, and the biometeorological index heat load (HL) produced was determined according to the heat balance equation. Comparing experimental values with those derived from theoretical estimates revealed a great heat stress for both individuals, especially the male, while theoretical values underestimated heat stress. The study also revealed that thermophysiological factors, such as mean skin temperature and metabolic heat production, play an important role in determining heat fluxes patterns in the heat balance equation. The theoretical values of mean skin temperature as derived from an empirical equation may not be appropriate to describe the changes that take place in a non-acclimated individual. Furthermore, the changes in metabolic heat production were significant even for standard activity.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Alta/efeitos adversos , Raios Infravermelhos/efeitos adversos , Aclimatação/fisiologia , Adulto , Feminino , Grécia , Transtornos de Estresse por Calor/etiologia , Transtornos de Estresse por Calor/fisiopatologia , Humanos , Masculino , Modelos Biológicos , Temperatura Cutânea/fisiologia
7.
Sci Total Environ ; 633: 492-499, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29579660

RESUMO

BACKGROUND: Air Quality indicators or indices (AQIs) are mainly used for communicating the air pollution levels and risk to the general population. However, very few epidemiological studies have used AQIs for characterizing exposure. OBJECTIVE: In the framework of the RESPOZE panel study we evaluated the association of daily ozone AQI levels with the daily occurrence of respiratory symptoms and Peak Expiratory Flow (PEF) and compared the effects with those estimated using measurements from fixed outdoor monitoring sites, in the city of Athens, Greece. MATERIALS AND METHODS: A panel of 97 children, aged 10-11years, was followed intensively for 35days (5weeks) during the academic year 2013-14. PEF and symptoms were recorded daily by each child. Two ozone AQIs classifying the air quality into 7 categories of increasing severity, were calculated; one characterizing the whole Athens area and one the local area around the child's residence and school. Measurements from fixed sites were also used. Mixed effects models for repeated measurements were applied, adjusting for several confounders. RESULTS: Increasing ozone levels were associated with increased incidence of symptoms, but the strongest and most statistically significant associations were found with the local air quality characterization with the AQI. Specifically, an increase in AQI-local by one category was associated with 34% (95% CI: 9%, 64%) increased odds of stuffy nose. When the AQI categories were "Bad" and "Severe", an increase in the incidence of cough was observed (OR 3.05 (95% CI: 1.29, 7.22) and 6.42 (95% CI: 1.47, 28.03) respectively). We did not observe a statistically significant association between AQI and PEF. CONCLUSION: Our results show that the use of an AQI based on local conditions may be advantageous over the use of only measurements when investigating the effects of air pollution on health outcomes for improving communication of risk to the public.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Ozônio/análise , Poluentes Atmosféricos/normas , Criança , Feminino , Grécia/epidemiologia , Humanos , Incidência , Masculino , Ozônio/normas , Material Particulado/análise , Testes de Função Respiratória , Doenças Respiratórias/epidemiologia
8.
Sci Total Environ ; 566-567: 877-887, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280378

RESUMO

Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA