Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods ; 59(3): 301-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23270813

RESUMO

Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.


Assuntos
Proteínas/química , Espectrometria de Fluorescência/métodos , Animais , Ligação Competitiva , Dimerização , Proteína Adaptadora GRB2/química , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Lasers , Conformação Molecular , Ligação Proteica , Proteínas de Protozoários/química , Ratos , Receptor A2A de Adenosina/química , Receptores de Neurotensina/química , Temperatura , Termodinâmica , Inibidores de beta-Lactamases , beta-Lactamases/química
2.
Structure ; 21(12): 2175-85, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24210756

RESUMO

The function of G protein-coupled receptors (GPCRs) can be modulated by a number of endogenous allosteric molecules. In this study, we used molecular dynamics, radioligand binding, and thermostability experiments to elucidate the role of the recently discovered sodium ion binding site in the allosteric modulation of the human A(2A) adenosine receptor, conserved among class A GPCRs. While the binding of antagonists and sodium ions to the receptor was noncompetitive in nature, the binding of agonists and sodium ions appears to require mutually exclusive conformational states of the receptor. Amiloride analogs can also bind to the sodium binding pocket, showing distinct patterns of agonist and antagonist modulation. These findings suggest that physiological concentrations of sodium ions affect functionally relevant conformational states of GPCRs and can help to design novel synthetic allosteric modulators or bitopic ligands exploiting the sodium ion binding pocket.


Assuntos
Receptor A2A de Adenosina/metabolismo , Sódio/metabolismo , Agonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/química , Regulação Alostérica , Sítio Alostérico , Amilorida/análogos & derivados , Amilorida/química , Sequência de Aminoácidos , Cátions Monovalentes , Células HEK293 , Temperatura Alta , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação Proteica , Estabilidade Proteica , Ensaio Radioligante , Receptor A2A de Adenosina/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA