Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 325(6): E723-E733, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877797

RESUMO

The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fenótipo , Cadeias Pesadas de Miosina/metabolismo
2.
Am J Physiol Endocrinol Metab ; 318(4): E538-E553, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990577

RESUMO

Mitochondria from skeletal muscle of humans with obesity often display alterations with respect to their morphology, proteome, biogenesis, and function. These changes in muscle mitochondria are considered to contribute to metabolic abnormalities observed in humans with obesity. Most of the evidence describing alterations in muscle mitochondria in humans with obesity, however, lacks reference to a specific subcellular location. This is despite data over the years showing differences in the morphology and function of subsarcolemmal (found near the plasma membrane) and intermyofibrillar (nested between the myofibrils) mitochondria in skeletal muscle. Recent studies reveal that impairments in mitochondrial function in obesity with respect to the subcellular location of the mitochondria in muscle are more readily evident following exposure of the skeletal muscle to physiological stimuli. In this review, we highlight the need to understand skeletal muscle mitochondria metabolism in obesity in a subpopulation-specific manner and in the presence of physiological stimuli that modify mitochondrial function in vivo. Experimental approaches employed under these conditions will allow for more precise characterization of impairments in skeletal muscle mitochondria and their implications in inducing metabolic dysfunction in human obesity.


Assuntos
Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fenômenos Fisiológicos da Nutrição , Obesidade/metabolismo , Animais , Humanos
3.
Exp Physiol ; 104(1): 126-135, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362197

RESUMO

NEW FINDINGS: What is the central question of this study? Humans with obesity have lower ATP synthesis in muscle along with lower content of the ß-subunit of the ATP synthase (ß-F1-ATPase), the catalytic component of the ATP synthase. Does lower synthesis rate of ß-F1-ATPase in muscle contribute to these responses in humans with obesity? What is the main finding and its importance? Humans with obesity have a lower synthesis rate of ß-F1 -ATPase and ATP synthase specific activity in muscle. These findings indicate that reduced production of subunits forming the ATP synthase in muscle may contribute to impaired generation of ATP in obesity. ABSTRACT: The content of the ß-subunit of the ATP synthase (ß-F1 -ATPase), which forms the catalytic site of the enzyme ATP synthase, is reduced in muscle of obese humans, along with a reduced capacity for ATP synthesis. We studied 18 young (37 ± 8 years) subjects of which nine were lean (BMI = 23 ± 2 kg m-2 ) and nine were obese (BMI = 34 ± 3 kg m-2 ) to determine the fractional synthesis rate (FSR) and gene expression of ß-F1 -ATPase, as well as the specific activity of the ATP synthase. FSR of ß-F1 -ATPase was determined using a combination of isotope tracer infusion and muscle biopsies. Gene expression of ß-F1 -ATPase and specific activity of the ATP synthase were determined in the muscle biopsies. When compared to lean, obese subjects had lower muscle ß-F1 -ATPase FSR (0.10 ± 0.05 vs. 0.06 ± 0.03% h-1 ; P < 0.05) and protein expression (P < 0.05), but not mRNA expression (P > 0.05). Across subjects, abundance of ß-F1 -ATPase correlated with the FSR of ß-F1 -ATPase (P < 0.05). The specific activity of muscle ATP synthase was lower in obese compared to lean subjects (0.035 ± 0.004 vs. 0.042 ± 0.007 arbitrary units; P < 0.05), but this difference was not significant after the activity of the ATP synthase was adjusted to the ß-F1 -ATPase content (P > 0.05). Obesity impairs the synthesis of ß-F1 -ATPase in muscle at the translational level, reducing the content of ß-F1 -ATPase in parallel with reduced capacity for ATP generation via the ATP synthase complex.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Expressão Gênica/fisiologia , Humanos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo
4.
Am J Physiol Endocrinol Metab ; 311(4): E671-E677, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27530230

RESUMO

Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (µmol·kg-1·min-1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas Musculares/biossíntese , Proteólise/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino , Fenilalanina/sangue , Biossíntese de Proteínas/efeitos dos fármacos , Adulto Jovem
5.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915696

RESUMO

Context: Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. Objective: We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from dietary and endogenous sources in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). Methods: The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from dietary sources across muscle from those from endogenous sources by incorporating stable isotope-labeled triolein in ingested fat. Results: Plasma insulin rapidly suppressed the extraction of plasma TGs from endogenous, but not dietary, sources in the Lean-IS, but same response was absent in the Obese-IR. Furthermore, in the muscle of Lean-IS, plasma insulin decreased the extraction of circulating NEFAs from both dietary and endogenous sources, but in Obese-IR subjects this response was absent for NEFAs from dietary sources. Conclusions: Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases, such as during the postprandial period, is impaired in humans with obesity and insulin resistance. Trial Registration: ClinicalTrials.gov ( NCT01860911 ).

6.
Curr Nutr Rep ; 13(2): 194-213, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38526760

RESUMO

PURPOSE OF REVIEW: This review aims to explore in-depth the different aspects of the association between very low-calorie ketogenic diet (VLCKD), obesity and obesity-related thyroid dysfunction. RECENT FINDINGS: The VLCKD, proposed as a non-pharmacological strategy for the management of certain chronic diseases, is becoming increasingly popular worldwide. Initially used to treat epilepsy, it has been shown to be effective in controlling body weight gain and addressing various pathophysiological conditions. Research has shown that a low-calorie, high-fat diet can affect thyroid hormone levels. Weight loss can also influence thyroid hormone levels. Studies have suggested that long-term use of VLCKD for refractory epilepsy may be related to the development of hypothyroidism, with an effect seen in various populations. In particular, women with obesity following VLCKD tend to have reduced T3 levels. We propose further research to unravel the underlying mechanisms linking VLCKD to obesity and obesity-related thyroid dysfunction.


Assuntos
Restrição Calórica , Dieta Cetogênica , Hipotireoidismo , Obesidade , Humanos , Obesidade/dietoterapia , Hipotireoidismo/dietoterapia , Redução de Peso , Hormônios Tireóideos/sangue , Glândula Tireoide , Feminino , Epilepsia/dietoterapia
7.
Obesity (Silver Spring) ; 31(11): 2689-2698, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37840435

RESUMO

OBJECTIVE: This study tested the hypothesis that expression of insulin-like growth factor 1 (IGF-1) protein and mRNA splice variants is lower in skeletal muscle of humans with obesity who have a lower mixed-muscle protein fractional synthesis rate (MMP-FSR) when compared with individuals without obesity. METHODS: The study included nine participants with obesity (OB, mean [SD],  BMI = 35 [3] kg/m2 , MMP-FSR = 0.06%/h [0.02%/h]) and nine participants without obesity (W-OB, BMI = 24 [3] kg/m2 , MMP-FSR = 0.08%/h [0.02%/h]; for both BMI and MMP-FSR p < 0.05). MMP-FSR and mitochondrial protein FSR were measured following an overnight fast. RESULTS: Along with lower MMP-FSR, OB participants displayed lower mitochondrial protein FSR (p = 0.03) compared with W-OB participants. Expression of IGF-1 (p = 0.04) and IGF-1 receptor (p < 0.01) proteins was lower in muscle of OB participants. In addition, OB participants had lower (p < 0.05) mRNA expression of IGF1 variants Eb and Ec. This study demonstrates that lower protein synthesis in muscle of humans with obesity occurs concurrently with lower expression of muscle IGF-1 and IGF-1 receptor proteins, as well as lower mRNA expression of the IGF1 splice variants. CONCLUSIONS: These findings indicate that lower protein synthesis observed in muscle of humans with obesity may result from diminished muscle IGF1 gene expression.


Assuntos
Fator de Crescimento Insulin-Like I , Proteínas Musculares , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Mitocondriais/metabolismo
8.
J Nutr ; 142(10): 1806-11, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22955513

RESUMO

Adverse effects on health mediated by increased plasma FFA concentrations are well established and older individuals are particularly susceptible to these effects. We sought to determine the effects of the amount of dietary fat on increasing the plasma FFA concentrations as a result of "spillover" of dietary fat into the plasma FFA pool during the postprandial period in older men. Healthy, older participants (63-71 y old) were studied in a randomized, crossover design following ingestions of low (LF) and moderate (MF) amounts of [1,1,1-(13)C]-triolein-labeled fat, corresponding to 0.4 and 0.7 g of fat/kg body weight, respectively. Spillover of dietary fatty acids into plasma during the 8-h postprandial period (AUC; mmol L(-1) h) after MF ingestion was 1.2 times greater than that after LF ingestion (2.8 ± 0.4 vs. 1.2 ± 0.1; P < 0.05). The spillover of dietary fatty acids following the MF, but not the LF, ingestion was correlated with the percent body fat (r(s) = -0.89) and percent body fat-free mass (r(s) = 0.94) of the men (P < 0.05). After adjusting to the amount of ingested fat, the spillover of dietary fatty acids in the MF trial was disproportionally higher than that in the LF trial (P < 0.05), but the corresponding postprandial plasma TG responses did not differ between trials. In conclusion, spillover of dietary lipid into plasma is disproportionally increased at higher doses of dietary fat and this response is inversely related to adiposity in healthy men of advanced age.


Assuntos
Adiposidade/fisiologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Ingestão de Alimentos/fisiologia , Período Pós-Prandial/fisiologia , Idoso , Quilomícrons/metabolismo , Estudos Cross-Over , Ácidos Graxos não Esterificados/efeitos adversos , Ácidos Graxos não Esterificados/sangue , Humanos , Insulina/sangue , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Triglicerídeos/sangue
9.
Front Physiol ; 13: 858341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444566

RESUMO

Obesity negatively impacts skeletal muscle protein metabolism, and also impairs skeletal muscle maintenance and regeneration. We analyzed muscle biopsy samples from humans with increased body mass index (BMI) (i.e. > 30 kg/m2) and controls (i.e., BMI < 25 kg/m2) for expression of syncytin-1, a fusogenic protein regulating skeletal muscle regeneration. When compared to controls, humans with increased BMI and concomitant reduction in muscle protein synthesis had higher expression of syncytin-1 in skeletal muscle (p < 0.05). Across human subjects, muscle protein synthesis correlated inversely (r = -0.51; p = 0.03) with syncytin-1 expression in muscle. Using a C2C12 cell line we found that expression of syncytin-A (i.e, corresponding protein in murine tissue) is increased by insulin, and that this response is impaired in the presence of fatty acids, whose metabolism is altered within the metabolic environment induced by increased BMI. In C2C12 cells, the response of the protein 4E-BP1, which signals increase in protein synthesis in muscle, resembled that of syncytin-A. These findings provide novel insights into the expression of syncytin-1 in skeletal muscle of humans with increased BMI, as well as its basic regulation by insulin and fatty acids in muscle. The findings signify the need for further research into the regulation of syncytin-1 in skeletal muscle of humans with increased BMI, as well as its biological implications for altering muscle protein metabolism and regeneration.

10.
Front Physiol ; 13: 843087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350688

RESUMO

Studies investigating the proteome of skeletal muscle present clear evidence that protein metabolism is altered in muscle of humans with obesity. Moreover, muscle quality (i.e., strength per unit of muscle mass) appears lower in humans with obesity. However, relevant evidence to date describing the protein turnover, a process that determines content and quality of protein, in muscle of humans with obesity is quite inconsistent. This is due, at least in part, to heterogeneity in protein turnover in skeletal muscle of humans with obesity. Although not always evident at the mixed-muscle protein level, the rate of synthesis is generally lower in myofibrillar and mitochondrial proteins in muscle of humans with obesity. Moreover, alterations in the synthesis of protein in muscle of humans with obesity are manifested more readily under conditions that stimulate protein synthesis in muscle, including the fed state, increased plasma amino acid availability to muscle, and exercise. Current evidence supports various biological mechanisms explaining impairments in protein synthesis in muscle of humans with obesity, but this evidence is rather limited and needs to be reproduced under more defined experimental conditions. Expanding our current knowledge with direct measurements of protein breakdown in muscle, and more importantly of protein turnover on a protein by protein basis, will enhance our understanding of how obesity modifies the proteome (content and quality) in muscle of humans with obesity.

11.
Brain Sci ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35326289

RESUMO

Physical activity leads to well-established health benefits. Current efforts to enhance physical activity have targeted mainly socioeconomic factors. However, despite these efforts, only a small number of adults engage in regular physical activity to the point of meeting current recommendations. Evidence collected in rodent models and humans establish a strong central nervous system component that regulates physical activity behavior. In particular, dopaminergic pathways in the central nervous system are among the best-characterized biological mechanisms to date with respect to regulating reward, motivation, and habit formation, which are critical for establishing regular physical activity. Herein, we discuss evidence for a role of brain dopamine in the regulation of voluntary physical activity behavior based on selective breeding and pharmacological studies in rodents, as well as genetic studies in both rodents and humans. While these studies establish a role of dopamine and associated mechanisms in the brain in the regulation of voluntary physical activity behavior, there is clearly need for more research on the underlying biology involved in motivation for physical activity and the formation of a physical activity habit. Such knowledge at the basic science level may ultimately be translated into better strategies to enhance physical activity levels within the society.

12.
Am J Physiol Endocrinol Metab ; 301(2): E356-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21558545

RESUMO

In the elderly, the rise in postprandial plasma triglyceride (TG) concentrations is increased, contributing to their increased risk of cardiovascular disease. We sought to determine the incorporation of ingested fat (whipping cream enriched with [1,1,1-(13)C]triolein) into plasma lipids during the postprandial period in six healthy elderly (67 ± 1 yr old) and six healthy young (23 ± 2 yr old) subjects. Blood and expired air samples were taken before and at 2-h intervals during the 8-h postprandial period. As expected, the area under the curve of postprandial plasma TG concentrations was larger in the elderly compared with the young subjects (152 ± 38 vs. 66 ± 27 mg·dl(-1)·h, P < 0.05). The incorporation of [(13)C]oleate in plasma free fatty acids (FFAs) and TG of the small (S(f) = 20-400) triglyceride-rich lipoprotein (TRL) fraction was significantly higher in the elderly compared with the young subjects, resulting in increased postprandial contributions of the ingested lipid to plasma FFAs (41 ± 3 vs. 26 ± 6%, P < 0.05) and the small TRL fraction (36 ± 5 vs. 21 ± 3%, P < 0.05) in elderly. Plasma apoB-100 concentration was higher, whereas the rate of oxidation of the ingested lipid was lower (P < 0.05) in the elderly. We conclude that increased postprandial lipemia in the elderly involves increased contribution of ingested lipid to the plasma small TRLs. This appears to be driven at least in part by increased appearance of the ingested fat as plasma FFA and increased availability of apo B-100 lipoproteins in the elderly.


Assuntos
Envelhecimento/metabolismo , Gorduras na Dieta/farmacocinética , Ácidos Graxos não Esterificados/farmacocinética , Hiperlipidemias/metabolismo , Período Pós-Prandial/fisiologia , Triglicerídeos/sangue , Idoso , Apolipoproteínas B/sangue , Quilomícrons/sangue , Humanos , Lipoproteínas VLDL/sangue , Masculino , Espectrometria de Massas , Oxirredução , Adulto Jovem
13.
Front Physiol ; 12: 702742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408662

RESUMO

Acute aerobic exercise induces skeletal muscle mitochondrial gene expression, which in turn can increase muscle mitochondrial protein synthesis. In this regard, the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), is a master regulator of mitochondrial biogenesis, and thus mitochondrial protein synthesis. However, PGC-1α expression is impaired in muscle of humans with obesity in response to acute aerobic exercise. Therefore, we sought to determine whether muscle mitochondrial protein synthesis is also impaired under the same conditions in humans with obesity. To this end, we measured mitochondrial and mixed-muscle protein synthesis in skeletal muscle of untrained subjects with (body fat: 34.7 ± 2.3%) and without (body fat: 25.3 ± 3.3%) obesity in a basal period and during a continuous period that included a 45 min cycling exercise (performed at an intensity corresponding to 65% of heart rate reserve) and a 3-h post-exercise recovery. Exercise increased PGC-1α mRNA expression in muscle of subjects without obesity, but not in subjects with obesity. However, muscle mitochondrial protein synthesis did not increase in either subject group. Similarly, mixed-muscle protein synthesis did not increase in either group. Concentrations of plasma amino acids decreased post-exercise in the subjects without obesity, but not in the subjects with obesity. We conclude that neither mitochondrial nor mixed-muscle protein synthesis increase in muscle of humans during the course of a session of aerobic exercise and its recovery period in the fasting state irrespective of obesity. Trial Registration: The study has been registered within ClinicalTrials.gov (NCT01824173).

14.
Med Sci Sports Exerc ; 51(3): 445-453, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30363008

RESUMO

INTRODUCTION: Current evidence indicates mitochondrial dysfunction in humans with obesity. Acute exercise appears to enhance mitochondrial function in the muscle of nonobese humans, but its effects on mitochondrial function in muscle of humans with obesity are not known. We sought to determine whether acute aerobic exercise stimulates mitochondrial function in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in humans with obesity. METHODS: We assessed maximal adenosine triphosphate production rate (MAPR) and citrate synthase (CS) activity in isolated SS and IMF mitochondria from subjects with body mass index < 27 kg·m (median age, 25 yr; interquartile range, 22-39 yr) and subjects with body mass index > 32 kg·m (median age, 29 yr; interquartile range, 20-39 yr) before and 3 h after a 45-min cycling exercise at an intensity corresponding to 65% HR reserve. The SS and IMF mitochondria were isolated from muscle biopsies using differential centrifugation. Maximal adenosine triphosphate production rate and CS activities were determined using luciferase-based and spectrophotometric enzyme-based assays, respectively. RESULTS: Exercise increased MAPR in IMF mitochondria in both nonobese subjects and subjects with obesity (P < 0.05), but CS-specific activity did not change in either group (P > 0.05). Exercise increased MAPR supported by complex II in SS mitochondria, in both groups (P < 0.05), but MAPR supported by complex I or palmitate did not increase by exercise in the subjects with obesity (P > 0.05). Citrate synthase-specific activity increased in SS mitochondria in response to exercise only in nonobese subjects (P < 0.05). CONCLUSIONS: In nonobese humans, acute aerobic exercise increases MAPR in both SS and IMF mitochondria. In humans with obesity, the exercise increases MAPR in IMF mitochondria, but this response is less evident in SS mitochondria.


Assuntos
Trifosfato de Adenosina/biossíntese , Exercício Físico , Mitocôndrias Musculares/metabolismo , Obesidade/metabolismo , Adulto , Glicemia/análise , Citrato (si)-Sintase/metabolismo , Feminino , Humanos , Resistência à Insulina , Masculino , Músculo Esquelético/metabolismo , Adulto Jovem
15.
Metabolism ; 89: 18-26, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30253140

RESUMO

BACKGROUND: Skeletal muscle mitochondrial content and function appear to be altered in obesity. Mitochondria in muscle are found in well-defined regions within cells, and they are arranged in a way that form distinct subpopulations of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. We sought to investigate differences in the proteomes of SS and IMF mitochondria between lean subjects and subjects with obesity. METHODS: We performed comparative proteomic analyses on SS and IMF mitochondria isolated from muscle samples obtained from lean subjects and subjects with obesity. Mitochondria were isolated using differential centrifugation, and proteins were subjected to label-free quantitative tandem mass spectrometry analyses. Collected data were evaluated for abundance of mitochondrial proteins using spectral counting. The Reactome pathway database was used to determine metabolic pathways that are altered in obesity. RESULTS: Among proteins, 73 and 41 proteins showed different (mostly lower) expression in subjects with obesity in the SS and IMF mitochondria, respectively (false discovery rate-adjusted P ≤ 0.05). We specifically found an increase in proteins forming the tricarboxylic acid cycle and electron transport chain (ETC) complex II, but a decrease in proteins forming protein complexes I and III of the ETC and adenosine triphosphate (ATP) synthase in subjects with obesity in the IMF, but not SS, mitochondria. Obesity was associated with differential effects on metabolic pathways linked to protein translation in the SS mitochondria and ATP formation in the IMF mitochondria. CONCLUSIONS: Obesity alters the expression of mitochondrial proteins regulating key metabolic processes in skeletal muscle, and these effects are distinct to mitochondrial subpopulations located in different regions of the muscle fibers. TRIAL REGISTRATION: ClinicalTrials.gov (NCT01824173).


Assuntos
Mitocôndrias Musculares/ultraestrutura , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Complexos de ATP Sintetase/metabolismo , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Redes e Vias Metabólicas , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Obesidade/patologia , Proteômica , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Espectrometria de Massas em Tandem
16.
Obesity (Silver Spring) ; 26(7): 1179-1187, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29896930

RESUMO

OBJECTIVE: Obesity alters protein metabolism in skeletal muscle, but consistent evidence is lacking. This study compared muscle protein synthesis in adults with obesity and in lean controls in the fasted state and during an amino acid infusion. METHODS: Ten subjects with obesity (age: 36 ± 3 years; BMI: 34 ± 1 kg/m2 ) and ten controls (age: 35 ± 3 years; BMI: 23 ± 1 kg/m2 ) received an infusion of L-[2,3,3,4,5,5,5,6,6,6-2 H10 ]leucine (0.15 µmol/kg fat-free mass/min) to measure muscle protein synthesis after an overnight fast and during amino acid infusion. RESULTS: Despite greater muscle mammalian target of rapamycin phosphorylation (P ≤ 0.05), fasted-state mixed-muscle and mitochondrial protein synthesis were lower in subjects with obesity (P ≤ 0.05). However, the change in mixed-muscle protein synthesis during the amino acid infusion was 2.7-fold greater in subjects with obesity (P ≤ 0.05), accompanied by a greater change in S6 kinase-1 phosphorylation (P ≤ 0.05). The change in mitochondrial protein synthesis did not differ between groups (P > 0.05). CONCLUSIONS: Adults with obesity have reduced muscle protein synthesis in the fasted state, but this response is compensated for by a greater change in overall muscle protein synthesis during amino acid infusion.


Assuntos
Aminoácidos/sangue , Jejum/sangue , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Obesidade/sangue , Biossíntese de Proteínas/fisiologia , Adulto , Aminoácidos/metabolismo , Animais , Estudos de Casos e Controles , Dieta , Feminino , Humanos , Leucina/administração & dosagem , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Regulação para Cima
17.
J Clin Endocrinol Metab ; 102(12): 4515-4525, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029131

RESUMO

Context: Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. Objective: To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Design: Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Participants: Eligible participants were healthy lean (body mass index, <25 kg/m2; age, 37 ± 3 years; n = 10) and obese (body mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Intervention: Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Main Outcomes: Mitochondrial respiration and ATP production. Results: AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P < 0.05), but not obese, subjects. Furthermore, AA infusion increased the uncoupled (i.e., non-ADP-stimulated) respiration of SS mitochondria in the lean subjects only (P < 0.05). AA infusion had no effect on any of these parameters in IMF mitochondria in either lean or obese subjects (P > 0.05). Conclusions: Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals.


Assuntos
Aminoácidos/sangue , Aminoácidos/farmacologia , Mitocôndrias Musculares/metabolismo , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Sarcolema/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Feminino , Hormônios/sangue , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Adulto Jovem
18.
Exp Gerontol ; 41(2): 215-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16310330

RESUMO

To counteract the debilitating progression of sarcopenia, a protein supplement should provide an energetically efficient anabolic stimulus. We quantified net muscle protein synthesis in healthy elderly individuals (65-79 yrs) following ingestion of an isocaloric intact whey protein supplement (WY; n=8) or an essential amino acid supplement (EAA; n=7). Femoral arterio-venous blood samples and vastus lateralis muscle biopsy samples were obtained during a primed, constant infusion of L-[ring-2H5]phenylalanine. Net phenylalanine uptake and mixed muscle fractional synthetic rate (FSR) were calculated during the post-absorptive period and for 3.5 h following ingestion of 15 g EAA or 15 g whey. After accounting for the residual increase in the intracellular phenylalanine pool, net post-prandial phenylalanine uptake was 53.4+/-9.7 mg phe leg-1 (EAA) and 21.7+/-4.6 mg phe leg-1 (WY), (P<0.05). Postabsorptive FSR values were 0.056+/-0.004% h-1 (EAA) and 0.049+/-0.006% h-1 (WY), (P>0.05). Both supplements stimulated FSR (P<0.05), but the increase was greatest in the EAA group with values of 0.088+/-0.011% h-1 (EAA) and 0.066+/-0.004% h-1 (WY), (P<0.05). While both EAA and WY supplements stimulated muscle protein synthesis, EAAs may provide a more energetically efficient nutritional supplement for elderly individuals.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/administração & dosagem , Proteínas do Leite/administração & dosagem , Proteínas Musculares/biossíntese , Administração Oral , Idoso , Aminoácidos/análise , Aminoácidos/metabolismo , Análise de Variância , Feminino , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Fenilalanina/análise , Fenilalanina/sangue , Fluxo Sanguíneo Regional , Proteínas do Soro do Leite
19.
Sports Med ; 36(7): 547-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16796393

RESUMO

Prolonged presence of elevated plasma triglycerides (TGs) during the postprandial period has been suggested to increase the risk for coronary artery disease. Aerobic exercise attenuates postprandial lipaemia and this has generally been described as a short-term effect of the exercise. Effects of exercise on postprandial lipaemia have mostly been investigated, and documented, with large exercise-induced energy expenditures (i.e. 1000 kcal). The exact mechanisms involved in the attenuation of postprandial lipaemia with exercise are not completely understood, but it appears that at least two mechanisms are involved: a decrease in TG secretion by the liver and an increase in plasma TG clearance by the muscle. Changes in the metabolism of other lipids, such as those in high-density lipoprotein cholesterol, have been documented only when the exercise is performed some hours before the fat meal. Although factors such as the physical fitness and percentage body fat of an individual are likely to also be involved, the most important factors determining the magnitude of the attenuation in postprandial lipaemia appear to be the magnitude of the exercise-induced energy expenditure and the intensity of exercise. To date, the evidence suggests that healthy individuals can generally induce favourable changes in postprandial lipaemia with aerobic exercise that: (i) is completed during the period extending from 16 hours before a meal through 1.5 hours after a meal; (ii) is of moderate intensity; and (iii) results in an energy expenditure of approximately 500 kcal (or more).


Assuntos
Terapia por Exercício , Hipertrigliceridemia/terapia , Metabolismo dos Lipídeos , Período Pós-Prandial , Doença das Coronárias/prevenção & controle , Humanos , Fatores de Tempo
20.
Nutrition ; 32(1): 9-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456190

RESUMO

Loss of skeletal muscle in patients who have undergone gastric bypass is a consistent observation. Skeletal muscle constitutes the largest protein/amino acid pool in the body, and loss of skeletal muscle has important implications in health and disease. Sustaining a given level of muscle protein requires a balance between the rates of muscle protein synthesis and breakdown. Current evidence suggests that reduced rate of protein synthesis is implicated in the loss of muscle after gastric bypass. This is not surprising given a less than optimal dietary protein intake after the procedure and because, unlike other macronutrients, protein/amino acids are not stored in the body. Ingesting essential amino acids (EAAs), which cannot be synthesized de novo and have the primary role in the regulation of muscle protein synthesis, can potentially ameliorate loss of muscle protein after gastric bypass. At the same time, ingestion of EAAs provides a more efficient nutritional approach (i.e., greater stimulation of protein synthesis relative to the amount of amino acids ingested) to enhance muscle protein synthesis compared with the ingestion of intact protein. Changing current dietary practices toward increasing ingestion of EAAs provides an approach that can potentially prevent loss of lean body tissue and ultimately achieve a more sustained level of health in patients who have undergone gastric bypass.


Assuntos
Aminoácidos Essenciais/uso terapêutico , Suplementos Nutricionais , Derivação Gástrica/efeitos adversos , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Aminoácidos Essenciais/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade Mórbida/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA