Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37595580

RESUMO

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Assuntos
Autofagia , Via de Sinalização Hippo , Animais , Camundongos , Sobrevivência Celular , Tamanho do Órgão
2.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682002

RESUMO

During intracellular signal transduction, protein-protein interactions (PPIs) facilitate protein complex assembly to regulate protein localization and function, which are critical for numerous cellular events. Over the years, multiple techniques have been developed to characterize PPIs to elucidate roles and regulatory mechanisms of proteins. Among them, the mass spectrometry (MS)-based interactome analysis has been increasing in popularity due to its unbiased and informative manner towards understanding PPI networks. However, with MS instrumentation advancing and yielding more data than ever, the analysis of a large amount of PPI-associated proteomic data to reveal bona fide interacting proteins become challenging. Here, we review the methods and bioinformatic resources that are commonly used in analyzing large interactome-related proteomic data and propose a simple guideline for identifying novel interacting proteins for biological research.


Assuntos
Mapas de Interação de Proteínas , Proteômica , Proteômica/métodos , Proteínas/metabolismo , Transdução de Sinais , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos
3.
Mol Cell Proteomics ; 21(2): 100195, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007762

RESUMO

Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, PLD1/2/6 catalyzes phosphatidic acid (PA) production, while PLD3/4/5 has no catalytic activities. Deregulation of the PLD-PA lipid signaling has been associated with various human diseases including cancer. However, a comprehensive analysis of the regulators and effectors for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, we defined the protein interaction network for the human PLD family of enzymes and PA and revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mammalian target of rapamycin signaling. Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1. Taken together, our study not only generates a rich interactome resource for further characterizing the human PLD-PA lipid signaling but also connects this important metabolic pathway with numerous biological processes.


Assuntos
Fosfolipase D , Humanos , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Mapas de Interação de Proteínas , Proteômica , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA