Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 45(2): 594-603, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32160796

RESUMO

In India, traditional herbal medicines have been an essential part of therapy for the last centuries. However, a large portion of the general populace is using these therapies in combination with allopathy lacking a proper understanding of possible interactions (synergistic or antagonistic) between the herbal product and the allopathic drug. This is based on the assumption that herbal drugs are relatively safe, i.e. without side effects. We have established a comprehensive understanding of the possible herb-drug interactions and identified interaction patterns between the most common herbs and drugs currently in use in the Indian market. For this purpose, we listed common interactors (herbs and allopathic drugs) using available scientific literature. Drugs were then categorized into therapeutic classes and aligned to produce a recognizable pattern present only if interactions were observed between a drug class and herb in the scientific literature. Interestingly, the top three categories (with highest interactors), antibiotics, oral hypoglycemics, and anticonvulsants, displayed synergistic interactions only. Another major interactor category was CYP450 enzymes, a natural component of our metabolism. Both activation and inhibition of CYP450 enzymes were observed. As many allopathic drugs are known CYP substrates, inhibitors or inducers, ingestion of an interacting herb could result in interaction with the co-administered drug. This information is largely unavailable for the Indian population and should be studied in greater detail to avoid such interactions. Although this information is not absolute, the systematic literature review proves the existence of herb-drug interactions in the literature and studies where no interaction was detected are equally important.


Assuntos
Preparações Farmacêuticas , Plantas Medicinais , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Ervas-Drogas , Índia , Plantas Medicinais/metabolismo
2.
Environ Monit Assess ; 194(11): 803, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121501

RESUMO

Microplastics are one of the emerging and ubiquitous environmental pollutants. Recent studies have proven their co-existence with pharmaceuticals in the environment wherein microplastics act as a potential vector for the transportation of pharmaceuticals. Both microplastics and pharmaceuticals are charged moieties enriched with diverse functional groups resulting in the possibility of multiple interactions. Major interactions could be electrostatic, hydrogen bonding, and hydrophobic, while minor interactions may occur through π-π interaction, cationic bridging mechanism, van der Waals interaction, partition, and pore-filling mechanism. These interactions have both short- and long-term effects over pharmaceutical sorption on microplastics and possibly, ensuing toxicity. This review analyses and summarises the currently reported interactions between microplastic particles and pharmaceuticals as well as establishes the link to various factors affecting the process, viz. pH, salinity, dissolved organic matter, and physiochemical properties of microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Monitoramento Ambiental , Preparações Farmacêuticas , Plásticos/química , Poluentes Químicos da Água/análise
3.
J Biol Chem ; 290(34): 21086-21100, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26100638

RESUMO

L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio/química , Cálcio/metabolismo , Sequência de Aminoácidos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Transformada , Membrana Celular/química , Membrana Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Transporte de Íons , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
4.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891390

RESUMO

The journal retracts the article, "A Novel Herbal Hydrogel Formulation of Moringa oleifera for Wound Healing" [...].

5.
Environ Sci Pollut Res Int ; 29(56): 84312-84324, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35779214

RESUMO

Microplastic pollution of our environment has seen major data reporting in the last decade. Microplastics produce harmful effects on marine organisms and in humans. Despite the fact that microplastics (MPs) have inert or sublethal toxicity in many circumstances, their long-term presence can have negative ecological consequences. However, there is a paucity of comprehensive literature on the present study and future development trend of MPs in aquatic ecosystems, to our knowledge. In this scientometric study, the literature was evaluated between years 2011 and 2019. The data show increasing importance of microplastics in terms of increase in publication in concurrence of granting funds in this area by major funding agencies. Most research articles were published by authors (~ 49%) affiliated with Chinese Academy of Sciences. Journals 'Marine Pollution Bulletin' and 'Environmental Pollution' were identified as important journals with 273 and 185 research publications, respectively. We have also identified the upcoming research trend and shift from microplastic presence in water to microplastic presence in air. However, in the year 2017, researchers from the UK started publishing more articles in this field with 11 publications with top authors affiliated to University of Plymouth. The journal Environmental Pollution has been found to be the leading journal (~ 20%) addressing the issue of microplastics in the environment. Our co-authorship analysis demonstrated that China (its institutions and authors) is the most collaborative country followed by the USA, together forming top cluster with a link strength of 42. Finally, our analysis provides information about prospective research and emerging trends that can be explored in the coming years.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Estudos Prospectivos , Poluição Ambiental/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
6.
J Biomol Struct Dyn ; 40(22): 11545-11559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348081

RESUMO

A well-validated in-silico approach can provide promising drug candidates for the treatment of the ongoing CoVID19 pandemic. In this study, we have screened 32 phytochemical constituents (PCCs) with Mpro binding site (PDB:6W63) based on which we identified three possible candidates that are likely to be effective against CoVID19-viz., licoleafol (binding energy: -8.1 kcal/mol), epicatechin gallate (-8.5 kcal/mol) and silibinin (-8.4 kcal/mol) that result in higher binding affinity than the known inhibitor, X77 (-7.7 kcal/mol). Molecular dynamics (MD) simulations of PCCs-Mpro complex confirmed molecular docking results with high structural and dynamical stability. The selected compounds were found to exhibit low mean squared displacements (licoleafol: 2.25 ± 0.43 Å, epicatechin gallate: 1.93 ± 0.35 Å, and silibinin: 1.39 ± 0.19 Å) and overall low fluctuations of the binding complexes (root mean squared fluctuations below 2 Å). Visualization of the MD trajectories and structural analyses revealed that they remain confined to the initial binding region, with mean fluctuations lower than 3 Å. To access the collective motion of the atoms, we performed principal component analysis demonstrating that the first 10 principal components are the major contributors (approximate contribution of 80%) and are responsible for the overall PCCs motion. Considering that the three selected PCCs share the same flavan backbone and exhibit antiviral activity against hepatitis C, we opine that licoleafol, epi-catechin gallate, and silibinin can be promising anti-CoVID19 drug candidates. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Silibina/farmacologia , Antivirais/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteases
7.
Mol Cell Neurosci ; 44(3): 246-59, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363327

RESUMO

Neurotransmitter release and spontaneous action potentials during cochlear inner hair cell (IHC) development depend on the activity of Ca(v)1.3 voltage-gated L-type Ca(2+) channels. Their voltage- and Ca(2+)-dependent inactivation kinetics are slower than in other tissues but the underlying molecular mechanisms are not yet understood. We found that Rab3-interacting molecule-2alpha (RIM2alpha) mRNA is expressed in immature cochlear IHCs and the protein co-localizes with Ca(v)1.3 in the same presynaptic compartment of IHCs. Expression of RIM proteins in tsA-201 cells revealed binding to the beta-subunit of the channel complex and RIM-induced slowing of both Ca(2+)- and voltage-dependent inactivation of Ca(v)1.3 channels. By inhibiting inactivation, RIM induced a non-inactivating current component typical for IHC Ca(v)1.3 currents which should allow these channels to carry a substantial window current during prolonged depolarizations. These data suggest that RIM2 contributes to the stabilization of Ca(v)1.3 gating kinetics in immature IHCs.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Potenciais de Ação/fisiologia , Processamento Alternativo , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas Internas/citologia , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas rab3 de Ligação ao GTP/genética
8.
Front Immunol ; 12: 693938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790191

RESUMO

More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Animais , Corpo Humano , Humanos , Pulmão/imunologia , Pulmão/virologia , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
9.
Environ Sci Pollut Res Int ; 27(31): 38568-38579, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623671

RESUMO

Ground level ozone is a major air pollutant with known toxic effects on humans. The research field is well established with many scientists from developed and developing countries contributing original research articles. Strict regulations for ozone air pollution are being implemented worldwide based on supporting scientific literature. In this scientometric analysis, we have analyzed the research trends in the field of ozone air pollution during 2011-2019. The collected SCOPUS data was analyzed using common scientometric analysis methods for known indicators to identify top ten rankings and scientific collaborations important for the field. Our result demonstrates that the USA is leading the field as USEPA and American regulatory authorities have funded most of the research. Two scientists, Russell A.G. and Schwartz J., working in American institutions, are leading with the most publications. Our assessment of ozone and PM together shows a significant impact on research direction in the last years to accommodate the study of both air pollutants together. In addition, we have analyzed the possible disease trends in the field for the last 3 years and identified that cardiovascular system, nervous system, and diabetes are upcoming disease areas that would be studied in the coming future.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ozônio/análise , Humanos , Material Particulado/análise , Estados Unidos , United States Environmental Protection Agency
10.
Front Physiol ; 11: 613948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329065

RESUMO

Electronic nicotine delivery systems/devices (ENDS) such as electronic cigarettes (e-cigarettes) have been made available globally, with the intent to reduce tobacco smoking. To make these products more appealing to young adults, many brands have added flavoring agents. However, these flavoring agents are shown to progressively result in lung toxicity when inhaled via e-cigarettes. While recent federal regulations have banned the sale of flavored e-cigarettes other than tobacco or menthol flavors, concerns have been raised about the health effects of even these flavors. In this review, we evaluate the current toxicological data with regard to effects upon exposure in animal models and in vitro cell culture for these popular flavorants. We have tabulated the current e-cigarette products containing these most common flavors (menthol, mint, and tobacco) in the market. We have also indicated the prevalence of tobacco and menthol-flavor use among e-cigarette users and highlighted the possible challenges and benefits that will result from new federal regulations.

11.
Plants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374419

RESUMO

Treatment of wounds is essential as the wound can also be lethal at some point in time if not healed properly. Ethnomedicinal plants can treat wounds as they have no side effects, whereas, in the case of chemical drugs, the side effects are on the rise. In this study, seeds of Moringa oleifera which is the essential ethnomedicinal plant, were studied for wound healing efficacy. The study was planned for the assessment of in vitro (antioxidant and antimicrobial activities) and in vivo (excision and incision wound healing models) wound healing efficacy of n-hexane extract and hydrogels of Moringa oleifera seeds. The antioxidant and antimicrobial activities were assessed by DPPH free radical scavenging assay and Agar well diffusion method, respectively. In excision and incision wound models, Swiss albino mice were used for wound healing efficacy of hydrogels, i.e., 5% and 10% hexane extracts of Moringa oleifera seeds. The n-hexane extract showed antioxidant as well as antibacterial activities. Moreover, the hydrogels formulated using n-hexane extract of Moringa oleifera seeds showed significant wound healing activity compared to both control and standard until the end of the protocol in both the models. Furthermore, the histopathological investigation confirmed the findings of accelerated regeneration of tissue accompanied by a decrease in inflammatory cells and increased vascularity of the immediate skin. The results (both in vitro and in vivo) claimed conclusively that our n-hexane hydrogel formulation of Moringa oleifera seeds might serve as an alternative therapy in skin restoration during wound healing.

12.
Chem Biol Interact ; 311: 108761, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348918

RESUMO

Water contamination by cyanobacterial blooms is a worldwide health hazard to humans as well as livestock. Exposure to Microcystins (MCs), toxins produced by various cyanobacterial or blue green algae found in poorly treated drinking water or contaminated seafood such as fish or prawns are associated with hepatotoxicity, nephropathy and neurotoxicity and in extreme cases, death in humans. MC congeners, currently >240 known, differ dramatically in their uptake kinetics, i.e. their uptake via OATP1B1 and OATP1B3, in OATP overexpressing human HEK293 cells and primary human hepatocytes. It is thus likely that MC congeners will also differ with respect to the cellular efflux of the parent and conjugated congeners, e.g. via MRPs, MDRs, BCRP or BSEP. Consequently, the role and kinetics of different human efflux transporters - MRP, MDR, BCRP and BSEP in MC efflux was studied using insect membrane vesicles overexpressing the human transporters of interest. Of the efflux transporters investigated, MRP2 displayed MC transport. Michaelis-Menten kinetics displayed mild co-operativity and thus allosteric behavior of MRP2. MC transport by MRP2 was MC congener-specific, whereby MC-LF was transported more rapidly than MC-LR and -RR. Other human transporters (BCRP, BSEP, MRP1,3,5, MDR1) tested in this study did not exhibit interaction with MC. Although MRP2 showed specific MC transport, the MC-LR-GSH conjugate, was not transported suggesting the involvement of other transporters than MRP2 for the conjugate efflux.


Assuntos
Glutationa/química , Microcistinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzobromarona/química , Benzobromarona/metabolismo , Cromatografia Líquida de Alta Pressão , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Toxinas Marinhas , Microcistinas/análise , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Espectrometria de Massas em Tandem
13.
Ann Transl Med ; 7(23): 792, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32042808

RESUMO

Autism spectrum disorder (ASD) affects approximately 2% of children in the United States (US) yet its etiology is unclear and effective treatments are lacking. Therapeutic interventions are most effective if started early in life, yet diagnosis often remains delayed, partly because the diagnosis of ASD is based on identifying abnormal behaviors that may not emerge until the disorder is well established. Biomarkers that identify children at risk during the pre-symptomatic period, assist with early diagnosis, confirm behavioral observations, stratify patients into subgroups, and predict therapeutic response would be a great advance. Here we underwent a systematic review of the literature on ASD to identify promising biomarkers and rated the biomarkers in regards to a Level of Evidence and Grade of Recommendation using the Oxford Centre for Evidence-Based Medicine scale. Biomarkers identified by our review included physiological biomarkers that identify neuroimmune and metabolic abnormalities, neurological biomarkers including abnormalities in brain structure, function and neurophysiology, subtle behavioral biomarkers including atypical development of visual attention, genetic biomarkers and gastrointestinal biomarkers. Biomarkers of ASD may be found prior to birth and after diagnosis and some may predict response to specific treatments. Many promising biomarkers have been developed for ASD. However, many biomarkers are preliminary and need to be validated and their role in the diagnosis and treatment of ASD needs to be defined. It is likely that biomarkers will need to be combined to be effective to identify ASD early and guide treatment.

14.
Toxicol Lett ; 288: 143-155, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29481849

RESUMO

Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Produtos do Tabaco/toxicidade , Adolescente , Animais , Biomarcadores , Dano ao DNA , Aromatizantes/farmacocinética , Humanos , Produtos do Tabaco/análise
15.
J Comp Neurol ; 525(14): 2991-3009, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28560734

RESUMO

This study explored why lesioned retinal ganglion cell (RGC) axons regenerate successfully in the zebrafish optic nerve despite the presence of Rtn4b, the homologue of the rat neurite growth inhibitor RTN4-A/Nogo-A. Rat Nogo-A and zebrafish Rtn4b possess characteristic motifs (M1-4) in the Nogo-A-specific region, which contains delta20, the most inhibitory region of rat Nogo-A. To determine whether zebrafish M1-4 is inhibitory as rat M1-4 and Nogo-A delta20, proteins were recombinantly expressed and used as substrates for zebrafish single cell RGCs, mouse hippocampal neurons and goldfish, zebrafish and chick retinal explants. When offered as homogenous substrates, neurites of hippocampal neurons and of zebrafish single cell RGCs were inhibited by zebrafish M1-4, rat M1-4, and Nogo-A delta20. Neurite length increased when zebrafish single cell RGCs were treated with receptor-type-specific antagonists and, respectively, with morpholinos (MO) against S1PR2 and S1PR5a-which represent candidate zebrafish Nogo-A receptors. In a stripe assay, however, where M1-4 lanes alternate with polylysine-(Plys)-only lanes, RGC axons from goldfish, zebrafish, and chick retinal explants avoided rat M1-4 but freely crossed zebrafish M1-4 lanes-suggesting that zebrafish M1-4 is growth permissive and less inhibitory than rat M1-4. Moreover, immunostainings and dot blots of optic nerve and myelin showed that expression of Rtn4b is very low in tissue and myelin at 3-5 days after lesion when axons regenerate. Thus, Rtn4b seems to represent no major obstacle for axon regeneration in vivo because it is less inhibitory for RGC axons from retina explants, and because of its low abundance.


Assuntos
Axônios/fisiologia , Proteínas da Mielina/metabolismo , Regeneração Nervosa , Proteínas Nogo/metabolismo , Traumatismos do Nervo Óptico/fisiopatologia , Nervo Óptico/fisiologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Embrião de Galinha , Carpa Dourada , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos Endogâmicos C57BL , Proteínas da Mielina/química , Bainha de Mielina/metabolismo , Crescimento Neuronal/fisiologia , Proteínas Nogo/química , Receptores Nogo/antagonistas & inibidores , Receptores Nogo/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/patologia , Ratos , Retina/patologia , Retina/fisiopatologia , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Peixe-Zebra , Proteínas de Peixe-Zebra/química
16.
Front Cell Neurosci ; 9: 309, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379493

RESUMO

Cav1.3 L-type Ca(2+)-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca(2+)- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca(2+)-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRD(HA/HA)). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca(2+)-dependent inactivation of Ca(2+)-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability.

17.
Artigo em Inglês | MEDLINE | ID: mdl-24683526

RESUMO

L-type calcium channels (Cav1) represent one of the three major classes (Cav1-3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1-Cav1.4) form the pore of L-type calcium channels (LTCCs) and contain the high-affinity drug-binding sites for dihydropyridines and other chemical classes of organic CCBs. In essentially all electrically excitable cells one or more of these LTCC isoforms is expressed, and therefore it is not surprising that many body functions including muscle, brain, endocrine, and sensory function depend on proper LTCC activity. Gene knockouts and inherited human diseases have allowed detailed insight into the physiological and pathophysiological role of these channels. Genome-wide association studies and analysis of human genomes are currently providing even more hints that even small changes of channel expression or activity may be associated with disease, such as psychiatric disease or cardiac arrhythmias. Therefore, it is important to understand the structure-function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.

18.
Expert Opin Investig Drugs ; 17(1): 43-60, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18095918

RESUMO

Aptamers constitute a new class of oligonucleotides that have gained therapeutic importance. With the approval of the first aptamer drug, pegaptanib, interest in this class of oligonucleotides, often referred to as 'chemical antibodies', has increased. This article discusses aptamers in relation to other oligonucleotide molecules such as antisense nucleotides, short inhibitory sequences, ribozymes and so on. The development of pegaptanib is looked at from the point of view of the challenges faced in converting aptamers into therapeutic molecules. Cases of other aptamers, which show promise as drugs, are discussed in slightly greater detail. Comparison with antibodies and small molecules, which have hitherto held monopoly in this area, is also made.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Desenho de Fármacos , Técnica de Seleção de Aptâmeros , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/efeitos adversos , Aptâmeros de Nucleotídeos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA