Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312638

RESUMO

ConspectusElectrochemical CO2 reduction to obtain formate or formic acid is receiving significant attention as a method to combat the global warming crisis. Significant efforts have been devoted to the advancement of CO2 reduction techniques over the past few decades. This Account provides a unified discussion on various electrochemical methodologies for CO2 to formate conversion, with a particular focus on recent advancements in utilizing 3d-transition-metal-based molecular catalysts. This Account primarily focuses on understanding molecular functions and mechanisms under homogeneous conditions, which is essential for assessing the optimized reaction conditions for molecular catalysts. The unique architectural features of the formate dehydrogenase (FDH) enzyme provide insight into the key role of the surrounding protein scaffold in modulating the active site dynamics for stabilizing the key metal-bound CO2 intermediate. Additionally, the protein moiety also triggers a facile proton relay around the active site to drive electrocatalytic CO2 reduction forward. The fine-tuning of FDH machinery also ensures that the electrocatalytic CO2 reduction leads to the production of formic acid as the major yield without any other carbonaceous products, while limiting the competitive hydrogen evolution reaction. These lessons from the enzymes are key in designing biomimetic molecular catalysts, primarily based on multidentate ligand scaffolds containing peripheral proton relays. The subtle modifications of the ligand framework ensure the favored production of formic acid following electrocatalytic CO2 reduction in the solution phase. Next, the molecular catalysts are required to be mounted on robust electroactive surfaces to develop their corresponding heterogeneous versions. The surface-immobilization provides an edge to the molecular electrocatalysts as their reactivity can be scaled up with improved durability for long-term electrocatalysis. Despite challenges in developing high-performance, selective catalysts for the CO2 to formic acid transformation, significant progress is being made with the tactical use of graphene and carbon nanotube-based materials. To date, the majority of the research activity stops here, as the development of an operational CO2 to formic acid converting electrolyzer prototype still remains in its infancy. To elaborate on the potential future steps, this Account covers the design, scaling parameters, and existing challenges of assembling large-scale electrolyzers. A short glimpse at the utilization of electrolyzers for industrial-scale CO2 reduction is also provided here. The proper evaluation of the surface-immobilized electrocatalysts assembled in an electrolyzer is a key step for gauging their potential for practical viability. Here, the key electrochemical parameters and their expected values for industrial-scale electrolyzers have been discussed. Finally, the techno-economic aspects of the electrolyzer setup are summarized, completing the journey from tactical design of molecular catalysts to their appropriate application in a commercially viable electrolyzer setup for CO2 to formate electroreduction. Thus, this Account portrays the complete story of the evolution of a molecular catalyst to its sustainable application in CO2 utilization.

2.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38099551

RESUMO

The development of robust and efficient photocatalytic constructs for boosting the water oxidation reaction (WOR) is needed for establishing a sunlight-driven renewable energy infrastructure. Here, we synthesized plasmonic core-shell nanoconstructs consisting of triangular gold nanoprism (AuTNP) core with mixed manganese oxide (MnOx) shell for photoelectrocatalytic WOR. These constructs show electrocatalytic WOR with a low onset overpotential requirement of 270 mV at pH 10. Photoexcitation showed further enhancement of their catalytic activity resulting in ∼15% decrease of the onset overpotential requirement along with the generation of photocurrent density of up to 300 µA/cm2. We showed that such light-driven enhancement of AuTNP@MnOx dyad's catalytic activity toward the WOR process includes contributions from both photocatalytic (hot carriers driven) and photothermal effects with photothermal effect playing the major role for wavelength between 532 and 808 nm. The contribution from the photocatalytic effect is appreciable only for high-energy excitations near the interband region, while the photothermal effect largely dominates for lower energy excitations near the LSPR wavelengths of the dyad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA