Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 430(7002): 865-7, 2004 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15318214

RESUMO

Each giant planet of the Solar System has two main types of moons. 'Regular' moons are typically larger satellites with prograde, nearly circular orbits in the equatorial plane of their host planets at distances of several to tens of planetary radii. The 'irregular' satellites (which are typically smaller) have larger orbits with significant eccentricities and inclinations. Despite these common features, Neptune's irregular satellite system, hitherto thought to consist of Triton and Nereid, has appeared unusual. Triton is as large as Pluto and is postulated to have been captured from heliocentric orbit; it traces a circular but retrograde orbit at 14 planetary radii from Neptune. Nereid, which exhibits one of the largest satellite eccentricities, is believed to have been scattered from a regular satellite orbit to its present orbit during Triton's capture. Here we report the discovery of five irregular moons of Neptune, two with prograde and three with retrograde orbits. These exceedingly faint (apparent red magnitude m(R) = 24.2-25.4) moons, with diameters of 30 to 50 km, were presumably captured by Neptune.

2.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054695

RESUMO

The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.

3.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054693

RESUMO

The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.

4.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054694

RESUMO

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.

5.
Science ; 363(6430): 955-959, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819958

RESUMO

The flyby of Pluto and Charon by the New Horizons spacecraft provided high-resolution images of cratered surfaces embedded in the Kuiper belt, an extensive region of bodies orbiting beyond Neptune. Impact craters on Pluto and Charon were formed by collisions with other Kuiper belt objects (KBOs) with diameters from ~40 kilometers to ~300 meters, smaller than most KBOs observed directly by telescopes. We find a relative paucity of small craters ≲13 kilometers in diameter, which cannot be explained solely by geological resurfacing. This implies a deficit of small KBOs (≲1 to 2 kilometers in diameter). Some surfaces on Pluto and Charon are likely ≳4 billion years old, thus their crater records provide information on the size-frequency distribution of KBOs in the early Solar System.

6.
Science ; 360(6392): 992-997, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853681

RESUMO

The surface of Pluto is more geologically diverse and dynamic than had been expected, but the role of its tenuous atmosphere in shaping the landscape remains unclear. We describe observations from the New Horizons spacecraft of regularly spaced, linear ridges whose morphology, distribution, and orientation are consistent with being transverse dunes. These are located close to mountainous regions and are orthogonal to nearby wind streaks. We demonstrate that the wavelength of the dunes (~0.4 to 1 kilometer) is best explained by the deposition of sand-sized (~200 to ~300 micrometer) particles of methane ice in moderate winds (<10 meters per second). The undisturbed morphology of the dunes, and relationships with the underlying convective glacial ice, imply that the dunes have formed in the very recent geological past.

7.
Science ; 341(6149): 994-7, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23990557

RESUMO

Trojan objects share a planet's orbit, never straying far from the triangular Lagrangian points, 60° ahead of (L4) or behind (L5) the planet. We report the detection of a Uranian Trojan; in our numerical integrations, 2011 QF99 oscillates around the Uranian L4 Lagrange point for >70,000 years and remains co-orbital for ~1 million years before becoming a Centaur. We constructed a Centaur model, supplied from the transneptunian region, to estimate temporary co-orbital capture frequency and duration (to a factor of 2 accuracy), finding that at any time 0.4 and 2.8% of the population will be Uranian and Neptunian co-orbitals, respectively. The co-orbital fraction (~2.4%) among Centaurs in the International Astronomical Union Minor Planet Centre database is thus as expected under transneptunian supply.

8.
Science ; 322(5900): 432-4, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18927391

RESUMO

The study of binary Kuiper Belt objects helps to probe the dynamic conditions present during planet formation in the solar system. We report on the mutual-orbit determination of 2001 QW322, a Kuiper Belt binary with a very large separation whose properties challenge binary-formation and -evolution theories. Six years of tracking indicate that the binary's mutual-orbit period is approximately 25 to 30 years, that the orbit pole is retrograde and inclined 50 degrees to 62 degrees from the ecliptic plane, and, most surprisingly, that the mutual orbital eccentricity is <0.4. The semimajor axis of 105,000 to 135,000 kilometers is 10 times that of other near-equal-mass binaries. Because this weakly bound binary is prone to orbital disruption by interlopers, its lifetime in its present state is probably less than 1 billion years.

9.
Nature ; 412(6843): 163-6, 2001 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-11449267

RESUMO

The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms: the regular satellites are believed to have formed in an accretion disk around the planet, like a miniature Solar System, whereas the irregulars are generally thought to be captured planetesimals. Here we report the discovery of 12 irregular satellites of Saturn, along with the determinations of their orbits. These orbits, along with the orbits of irregular satellites of Jupiter and Uranus, fall into groups on the basis of their orbital inclinations. We interpret this result as indicating that most of the irregular moons are collisional remnants of larger satellites that were fragmented after capture, rather than being captured independently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA