RESUMO
Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.
Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , NeuroimagemRESUMO
BACKGROUND AND PURPOSE: To clarify the relationship between fiber-specific white matter changes in amyotrophic lateral sclerosis (ALS) and clinical signs of upper motor neuron (UMN) involvement, we performed a fixel-based analysis (FBA), a novel framework for diffusion-weighted imaging analysis. METHODS: We enrolled 96 participants, including 48 nonfamilial ALS patients and 48 age- and sex-matched healthy controls (HCs), in this study and conducted whole-brain FBA and voxel-based morphometry analysis. We compared the fiber density (FD), fiber morphology (fiber cross-section [FC]), and a combined index of FD and FC (FDC) between the ALS and HC groups. We performed a tract-of-interest analysis to extract FD values across the significant regions in the whole-brain analysis. Then, we evaluated the associations between FD values and clinical variables. RESULTS: The bilateral corticospinal tracts (CSTs) and the corpus callosum (CC) showed reduced FD and FDC in ALS patients compared with HCs (p < 0.05, familywise error-corrected), and the comparison of FCs revealed no region that was significantly different from another. Voxel-based morphometry showed cortical volume reduction in the regions, including the primary motor area. Clinical scores showed correlations with FD values in the CSTs (UMN score: rho = -0.530, p < 0.001; central motor conduction time [CMCT] in the upper limb: rho = -0.474, p = 0.008; disease duration: rho = -0.383, p = 0.007; ALS Functional Rating Scale-Revised: rho = 0.340, p = 0.018). In addition, patients whose CMCT was not calculated due to unevoked waves also showed FD reduction in the CSTs. CONCLUSIONS: Our findings suggest that FD values in the CST estimated via FBA can be potentially used in evaluating UMN impairments.
Assuntos
Esclerose Lateral Amiotrófica , Substância Branca , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Neurônios Motores , Tratos Piramidais/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
Neuroimaging studies have shown that the brain is functionally organized into several large-scale brain networks. Within these networks are regions that are widely connected to several other regions within and/or outside the network. Regions that connect to several other networks, known as connector hubs, are believed to be crucial for information transfer and between-network communication within the brain. To identify regions with high between-network connectivity at the voxel level, we introduced a novel metric called functional connectivity overlap ratio (FCOR), which quantifies the spatial extent of a region's connection to a given network. Using resting state functional magnetic resonance imaging data, FCOR maps were generated for several well-known large-scale resting state networks (RSNs) and used to examine the relevant associations among different RSNs, identify connector hub regions in the cerebral cortex, and elucidate the hierarchical functional organization of the brain. Constructed FCOR maps revealed a strong association among the core neurocognitive networks (default mode, salience, and executive control) as well as among primary processing networks (sensorimotor, auditory, and visual). Prominent connector hubs were identified in the bilateral middle frontal gyrus, posterior cingulate, lateral parietal, middle temporal, dorsal anterior cingulate, and anterior insula, among others, regions mostly associated with the core neurocognitive networks. Finally, clustering the whole brain using FCOR features yielded a topological organization that arranges brain regions into a hierarchy of information processing systems with the primary processing systems at one end and the heteromodal systems comprising connector hubs at the other end.
Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Córtex Cerebral/fisiologia , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto JovemRESUMO
White matter (WM) fiber bundles change dynamically with age. These changes could be driven by alterations in axonal diameter, axonal density, and myelin content. In this study, we applied a novel fixel-based analysis (FBA) framework to examine these changes throughout the adult lifespan. Using diffusion-weighted images from a cohort of 293 healthy volunteers (89 males/204 females) from ages 21 to 86 years old, we performed FBA to analyze age-related changes in microscopic fiber density (FD) and macroscopic fiber morphology (fiber cross section [FC]). Our results showed significant and widespread age-related alterations in FD and FC across the whole brain. Interestingly, some fiber bundles such as the anterior thalamic radiation, corpus callosum, and superior longitudinal fasciculus only showed significant negative relationship with age in FD values, but not in FC. On the other hand, some segments of the cerebello-thalamo-cortical pathway only showed significant negative relationship with age in FC, but not in FD. Analysis at the tract-level also showed that major fiber tract groups predominantly distributed in the frontal lobe (cingulum, forceps minor) exhibited greater vulnerability to the aging process than the others. Differences in FC and the combined measure of FD and cross section values observed between sexes were mostly driven by differences in brain sizes although male participants tended to exhibit steeper negative linear relationship with age in FD as compared to female participants. Overall, these findings provide further insights into the structural changes the brain's WM undergoes due to the aging process.
Assuntos
Envelhecimento/fisiologia , Imagem de Difusão por Ressonância Magnética , Desenvolvimento Humano/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Fatores Sexuais , Substância Branca/diagnóstico por imagem , Adulto JovemRESUMO
Cognitive deficits in Parkinson's disease (PD) are heterogeneous entities, and the cognitive status fluctuates over time. However, individual changes in longitudinal cognitive performance in PD are not fully understood. We evaluated three visual indices (visuoperception, visuoconstruction, and visuospatial ability) and four cognitive domains (attention/working memory, executive function, memory, and language) at baseline (Time1) and at 1-year follow-up (Time2) in 36 patients with PD and 32 healthy controls (HCs). To explore the magnitude and frequency of cognitive changes, we analyzed data using the simple difference method and the standardized regression-based method. We also explored the correlations between changes in test scores and several clinical predictors, using logistic regression analysis. At 1 year, patients with PD showed higher rates of change in scores on several cognitive tests, especially the Incomplete Letters test of visuoperception, compared to HCs. After adjusting for demographic variables, the visuoperceptual change was 61.1% overall, with the largest effect size. The changes in scores of visuoperception correlated with those of memory (r = 0.672, p < 0.001), language (r = 0.389, p < 0.05), and visuospatial ability (r = 0.379, p < 0.05). The severity of olfactory disturbance, the MDS-UPDRS Part I score, and younger PD onset predicted the significant changes observed in the Incomplete Letters test scores. Visuoperception changed more in non-demented PD patients than in HCs at 1-year follow-up. The changes in visuoperception could relate to involvement of the ventral occipitotemporal pathway, the more widespread temporal lobe, and brain reserve in PD.
Assuntos
Disfunção Cognitiva , Doença de Parkinson , Função Executiva , Seguimentos , Humanos , Testes Neuropsicológicos , Doença de Parkinson/complicaçõesRESUMO
We aimed to elucidate the effect of cerebellar degeneration in relation to cognition in multiple system atrophy (MSA). Thirty-two patients diagnosed with probable MSA and 32 age- and gender-matched healthy controls (HCs) were enrolled. We conducted voxel-based morphometry (VBM) for anatomical images and independent component analysis (ICA), dual-regression analysis, and seed-based analysis for functional images with voxel-wise gray matter correction. In the MSA group, a widespread cerebellar volume loss was observed. ICA and dual-regression analysis showed lower functional connectivity (FC) in the left executive control and salience networks in regions located in the cerebellum. Seed-based analysis using the identified cerebellar regions as seeds showed extensive disruptions in cerebello-cerebral networks. Global cognitive scores correlated with the FC values between the right lobules VI/crus I and the medial prefrontal/anterior cingulate cortices and between the same region and the amygdala/parahippocampal gyrus. Our study indicates that cerebellar degeneration in MSA causes segregation of cerebellar-cerebral networks. Furthermore, the cognitive deficits in MSA may be driven by decreased cerebello-prefrontal and cerebello-amygdaloid functional connections.
Assuntos
Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Cognição , Atrofia de Múltiplos Sistemas/fisiopatologia , Atrofia de Múltiplos Sistemas/psicologia , Rede Nervosa/fisiopatologia , Idoso , Mapeamento Encefálico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/complicações , Testes Neuropsicológicos , Desempenho PsicomotorRESUMO
This study aims to elucidate age-related intrinsic brain volume changes over the adult lifespan using an unbiased data-driven structural brain parcellation. Anatomical brain images from a cohort of 293 healthy volunteers ranging in age from 21 to 86 years were analyzed using independent component analysis (ICA). ICA-based parcellation identified 192 component images, of which 174 (90.6%) showed a significant negative correlation with age and with some components being more vulnerable to aging effects than others. Seven components demonstrated a convex slope with aging; 3 components had an inverted U-shaped trajectory, and 4 had a U-shaped trajectory. Linear combination of 86 components provided reliable prediction of chronological age with a mean absolute prediction error of approximately 7.2 years. Structural co-variation analysis showed strong interhemispheric, short-distance positive correlations and long-distance, inter-lobar negative correlations. Estimated network measures either exhibited a U- or an inverted U-shaped relationship with age, with the vertex occurring at approximately 45-50 years. Overall, these findings could contribute to our knowledge about healthy brain aging and could help provide a framework to distinguish the normal aging processes from that associated with age-related neurodegenerative diseases.
Assuntos
Envelhecimento/fisiologia , Encéfalo/anatomia & histologia , Substância Cinzenta/anatomia & histologia , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
We previously reported that Parkinson's disease (PD) patients treated with subthalamic nucleus deep brain stimulation (STN-DBS) had distinct phenotypes of speech and voice disorders: hypokinetic dysarthria, stuttering, breathy voice, strained voice, and spastic dysarthria. However, changes over time remain unclear. In the present study, 32 consecutive PD patients were assessed before and up to 1 year after surgery (PD-DBS). Eleven medically treated PD patients were also assessed (PD-Med). Speech, voice, motor, and cognitive functions were evaluated. At baseline, the incidence of hypokinetic dysarthria (63% of PD-DBS vs. 82% of PD-Med), stuttering (50% vs. 45%), breathy voice (66% vs. 73%), and strained voice (3% vs. 9%) was similar between groups. At 1 year, a slight but significant deterioration in speech intelligibility (p < 0.001) and grade of dysphonia (p = 0.001) were observed only in PD-DBS group compared with baseline. During the follow-up, stuttering (9% vs. 18%) and breathy voice (13% vs. 9%) emerged in PD-DBS and PD-Med, but strained voice (28%) and spastic dysarthria (44%) emerged only in PD-DBS. After the stimulation was stopped, strained voice and spastic dysarthria improved in most patients, while stuttering and breathy voice improved in a minority of patients. These findings indicate that the most common DBS-induced speech and voice disorders are strained voice and spastic dysarthria and that STN-DBS potentially aggravates stuttering and breathy voice. An improved understanding of these types of disorders may help detect speech and voice deteriorations during the early phase and lead to appropriate treatments.
Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Distúrbios da Fala , Núcleo Subtalâmico/fisiologia , Distúrbios da Voz , Idoso , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Distúrbios da Fala/diagnóstico , Distúrbios da Fala/etiologia , Distúrbios da Fala/terapia , Estatísticas não Paramétricas , Fatores de Tempo , Distúrbios da Voz/diagnóstico , Distúrbios da Voz/etiologia , Distúrbios da Voz/terapiaRESUMO
INTRODUCTION: Olfactory dysfunction and REM sleep behavior disorder (RBD) are associated with distinct cognitive trajectories in the course of Parkinson's disease (PD). The underlying neurobiology for this relationship remains unclear but may involve distinct patterns of neurodegeneration. This study aimed to examine longitudinal cortical atrophy and thinning in early-stage PD with severe olfactory deficit (anosmia) without and with concurrent probable RBD. METHODS: Longitudinal MRI data over four years of 134 de novo PD and 49 healthy controls (HC) from the Parkinson Progression Marker Initiative (PPMI) cohort were analyzed using a linear mixed-effects model. Patients were categorized into those with anosmia by the University of Pennsylvania Smell Identification Test (UPSIT) score ≤ 18 (AO+) and those without (UPSIT score > 18, AO-). The AO+ group was further subdivided into AO+ with probable RBD (AO+RBD+) and without (AO+RBD-) for subanalysis. RESULTS: Compared to subjects without baseline anosmia, the AO+ group exhibited greater longitudinal declines in both volume and thickness in the bilateral parahippocampal gyri and right transverse temporal gyrus. Patients with concurrent anosmia and RBD showed more extensive longitudinal declines in cortical volume and thickness, involving additional brain regions including the bilateral precuneus, left inferior temporal gyrus, right paracentral gyrus, and right precentral gyrus. CONCLUSIONS: The atrophy/thinning patterns in early-stage PD with severe olfactory dysfunction include regions that are critical for cognitive function and could provide a structural basis for previously reported associations between severe olfactory deficit and cognitive decline in PD. Concurrent RBD might enhance the dynamics of cortical changes.
Assuntos
Imageamento por Ressonância Magnética , Transtornos do Olfato , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Longitudinais , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/fisiopatologia , Transtorno do Comportamento do Sono REM/etiologia , Transtorno do Comportamento do Sono REM/patologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/fisiopatologia , Atrofia/patologia , Anosmia/etiologia , Anosmia/fisiopatologia , Anosmia/diagnóstico por imagem , Progressão da Doença , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologiaRESUMO
INTRODUCTION: Parkinson's disease (PD) exhibits divergent cognitive trajectories; however, the factors contributing to these variations remain elusive. This study aimed to examine the clinical features of patients with different long-term cognitive trajectories in de novo PD over a five-year follow-up. METHODS: We analyzed 258 patients who completed every annual evaluation for five years. According to the Montreal Cognitive Assessment (MoCA) scores, we classified patients into three groups: cognitively normal (n = 118, CN), remitting MoCA decline (n = 74, RMD), and progressive MoCA decline (n = 66, PMD). RESULTS: The RMD group was associated with lower olfactory scores (Odds Ratio (OR) = 0.958, p = 0.040), whereas PMD was associated with higher depression scores (OR = 1.158, p = 0.045), probable RBD (OR = 3.169, p = 0.002), older age (OR = 1.132, p < 0.001) and lower educational attainment (OR = 0.828, p = 0.004). PMD had higher neurofilament light chain protein values than CN and RMD (p = 0.006, 0.015, respectively). Longitudinally, PMD showed a greater decline in all cognitive scores and hippocampus volumes (p = 0.004). Meanwhile, RMD exhibited intermediate cognitive and volumetric trajectories between CN and PMD and displayed worse score changes in memory tasks than CN. CONCLUSIONS: While PMD exhibited known risk factors for cognitive impairment, along with worse cognitive performance and hippocampal volume decline, RMD displayed baseline lower olfactory scores and intermediate cognitive and hippocampal volume decline between the two groups. These findings suggest individuals in RMD may still be at risk for cognitive deficits. However, further long-term follow-up data are needed to unravel the determinants and dynamics of cognitive functions.
Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/psicologia , Testes Neuropsicológicos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/complicações , CogniçãoRESUMO
BACKGROUND: Advanced imaging techniques have been studied for differential diagnosis between PD, MSA, and PSP. OBJECTIVES: This study aims to validate the utility of individual voxel-based morphometry techniques for atypical parkinsonism in a blinded fashion. METHODS: Forty-eight healthy controls (HC) T1-WI were used to develop a referential dataset and fit a general linear model after segmentation into gray matter (GM) and white matter (WM) compartments. Segmented GM and WM with PD (n = 96), MSA (n = 18), and PSP (n = 20) were transformed into z-scores using the statistics of referential HC and individual voxel-based z-score maps were generated. An imaging diagnosis was assigned by two independent raters (trained and untrained) blinded to clinical information and final diagnosis. Furthermore, we developed an observer-independent index for ROI-based automated differentiation. RESULTS: The diagnostic performance using voxel-based z-score maps by rater 1 and rater 2 for MSA yielded sensitivities: 0.89, 0.94 (95% CI: 0.74-1.00, 0.84-1.00), specificities: 0.94, 0.80 (0.90-0.98, 0.73-0.87); for PSP, sensitivities: 0.85, 0.90 (0.69-1.00, 0.77-1.00), specificities: 0.98, 0.94 (0.96-1.00, 0.90-0.98). Interrater agreement was good for MSA (Cohen's kappa: 0.61), and excellent for PSP (0.84). Receiver operating characteristic analysis using the ROI-based new index showed an area under the curve (AUC): 0.89 (0.77-1.00) for MSA, and 0.99 (0.98-1.00) for PSP. CONCLUSIONS: These evaluations provide support for the utility of this imaging technique in the differential diagnosis of atypical parkinsonism demonstrating a remarkably high differentiation accuracy for PSP, suggesting potential use in clinical settings in the future.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Doença de Parkinson/diagnóstico , Diagnóstico Diferencial , Paralisia Supranuclear Progressiva/diagnóstico , Transtornos Parkinsonianos/diagnóstico , Encéfalo/diagnóstico por imagemRESUMO
OBJECTIVES: Standardised uptake value ratio (SUVR) is usually obtained by dividing the SUV of the region of interest (ROI) by that of the cerebellar cortex. Cerebellar cortex is not a valid reference in cases where amyloid ß deposition or lesions are present. Only few studies have evaluated the use of other regions as references. We compared the validity of the pons and corpus callosum as reference regions for the quantitative evaluation of brain positron emission tomography (PET) using 11C-PiB compared to the cerebellar cortex. METHODS: We retrospectively evaluated data from 86 subjects with or without Alzheimer's disease (AD). All subjects underwent magnetic resonance imaging, PET imaging, and cognitive function testing. For the quantitative analysis, three-dimensional ROIs were automatically placed, and SUV and SUVR were obtained. We compared these values between AD and healthy control (HC) groups. RESULTS: SUVR data obtained using the pons and corpus callosum as reference regions strongly correlated with that using the cerebellar cortex. The sensitivity and specificity were high when either the pons or corpus callosum was used as the reference region. However, the SUV values of the corpus callosum were different between AD and HC (p < 0.01). CONCLUSIONS: Our data suggest that the pons and corpus callosum might be valid reference regions.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Ponte/diagnóstico por imagem , Ponte/metabolismo , Ponte/patologia , Compostos de AnilinaRESUMO
OBJECTIVE: About 30%-50% of patients with amyotrophic lateral sclerosis (ALS) show cognitive impairment ranging from mild dysexecutive syndrome to frontotemporal dementia. We aimed to develop a brief cognitive test, convenient auditory-based language and executive function test (CABLET), for rapid detection of cognitive impairment in ALS, with reduced load on motor function. METHOD: The CABLET comprises two tests using auditory verbal stimuli: Test 1, assessing word repetition and lexical judgment, and Test 2, evaluating verbal short-term memory and semantics knowledge. The administration time of Test 1 and Test 2 was 1 and 3-5 min, respectively. Overall, 61 patients with ALS and 46 age-, sex-, and education-matched healthy controls participated in this study. All participants underwent existing neuropsychological tests and the CABLET. We investigated the applicability of the CABLET to detect ALS with cognitive impairment (ALSci) from normal cognition. RESULTS: Receiver operating characteristic analyses showed that both the CABLET total and Test 2 had good diagnostic accuracy (area under the curve [AUC]: total = 0.894, Test 2 = 0.893). Test 2 had the highest sensitivity (100% sensitivity and 71.4% specificity). No significant difference existed in the AUC between the analyses with and without age, education, and disease severity as covariates. Correlations were observed between the CABLET and established neuropsychological tests, supporting its good convergent validity. CONCLUSIONS: Our findings indicated that the CABLET could be useful in identifying ALSci quickly without adjusting for confounding factors. Further validation is required to evaluate it in larger groups and compare with ALS-specific cognitive screen.
Assuntos
Esclerose Lateral Amiotrófica , Função Executiva , Humanos , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico , Projetos Piloto , Testes Neuropsicológicos , IdiomaRESUMO
We aimed to elucidate the distribution pattern of the positron emission tomography probe [18F]THK 5351, a marker for astrogliosis and tau accumulation, in healthy aging. We also assessed the relationship between THK5351 retention and resting state networks. We enrolled 62 healthy participants in this study. All participants underwent magnetic resonance imaging/positron emission tomography scanning consisting of T1-weighted images, resting state functional magnetic resonance imaging, Pittsburgh Compound-B and THK positron emission tomography. The preprocessed THK images were entered into a scaled subprofile modeling/principal component analysis to extract THK distribution patterns. Using the most significant THK pattern, we generated regions of interest, and performed seed-based functional connectivity analyses. We also evaluated the functional connectivity overlap ratio to identify regions with high between-network connectivity. The most significant THK distributions were observed in the medial prefrontal cortex and bilateral putamen. The seed regions of interest in the medial prefrontal cortex had a functional connectivity map that significantly overlapped with regions of the dorsal default mode network. The seed regions of interest in the putamen showed strong overlap with the basal ganglia and anterior salience networks. The functional connectivity overlap ratio also showed that three peak regions had the characteristics of connector hubs. We have identified an age-related spatial distribution of THK in the medial prefrontal cortex and basal ganglia in normal aging. Interestingly, the distribution's peaks are located in regions of connector hubs that are strongly connected to large-scale resting state networks associated with higher cognitive function.
RESUMO
OBJECTIVE: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy ameliorates symptoms in patients with essential tremor (ET). How this treatment affects canonical brain networks has not been elucidated. The purpose of this study was to clarify changes of brain networks after MRgFUS thalamotomy in ET patients by analyzing resting-state networks (RSNs). METHODS: Fifteen patients with ET were included in this study. Left MRgFUS thalamotomy was performed in all cases, and MR images, including resting-state functional MRI (rsfMRI), were taken before and after surgery. MR images of 15 age- and sex-matched healthy controls (HCs) were also used for analysis. Using rsfMRI data, canonical RSNs were extracted by performing dual regression analysis, and the functional connectivity (FC) within respective networks was compared among pre-MRgFUS patients, post-MRgFUS patients, and HCs. The severity of tremor was evaluated using the Clinical Rating Scale for Tremor (CRST) score pre- and postoperatively, and its correlation with RSNs was examined. RESULTS: Preoperatively, ET patients showed a significant decrease in FC in the sensorimotor network (SMN), primary visual network (VN), and visuospatial network (VSN) compared with HCs. The decrease in FC in the SMN correlated with the severity of tremor. After MRgFUS thalamotomy, ET patients still exhibited a significant decrease in FC in a small area of the SMN, but they exhibited an increase in the cerebellar network (CN). In comparison between pre- and post-MRgFUS patients, the FC in the SMN and the VSN significantly increased after treatment. Quantitative evaluation of the FCs in these three groups showed that the SMN and VSN increased postoperatively and demonstrated a trend toward those of HCs. CONCLUSIONS: The SMN and CN, which are considered to be associated with the cerebello-thalamo-cortical loop, exhibited increased connectivity after MRgFUS thalamotomy. In addition, the FC of the visual network, which declined in ET patients compared with HCs, tended to normalize postoperatively. This could be related to the hypothesis that visual feedback is involved in tremor severity in ET patients. Overall, the analysis of the RSNs by rsfMRI reflected the pathophysiology with the intervention of MRgFUS thalamotomy in ET patients and demonstrated a possibility of a biomarker for successful treatment.
Assuntos
Tremor Essencial , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Tremor , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância MagnéticaRESUMO
Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson's disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients' motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder's two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson's disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.
RESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) is known to cause not only respiratory but also neuropsychiatric symptoms, which are assumed to be derived from a cytokine storm and its effects on the central nervous systems. Patients with COVID-19 who develop severe respiratory symptoms are known to show severe neuropsychiatric symptoms such as cerebrovascular disease and encephalopathy. However, the detailed clinical courses of patients with neuropsychiatric symptoms caused by mild or asymptomatic COVID-19 remain poorly understood. Here, we present a case of COVID-19 who presented with severe and prolonged neuropsychiatric symptoms subsequent to mild respiratory symptoms. CASE PRESENTATION: A 55-year-old female with COVID-19 accompanied by mild respiratory symptoms showed delusion, psychomotor excitement, and poor communication ability during quarantine outside the hospital. Considering her diminished respiratory symptoms, her neuropsychiatric symptoms were initially regarded as psychogenic reactions. However, as she showed progressive disturbance of consciousness accompanied by an abnormal electroencephalogram, she was diagnosed with post-COVID-19 encephalopathy. Although her impaired consciousness and elevated cytokine level improved after steroid pulse therapy, several neuropsychiatric symptoms, including a loss of concentration, unsteadiness while walking, and fatigue, remained. CONCLUSIONS: This case suggests the importance of both recognizing that even apparently mild COVID-19-related respiratory symptoms can lead to severe and persistent neuropsychiatric symptoms, and elucidating the mechanisms, treatment, and long-term course of COVID-19-related neuropsychiatric symptoms in the future.
Assuntos
COVID-19 , Transtornos Mentais , COVID-19/complicações , Fadiga , Feminino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2RESUMO
The aging brain undergoes structural changes even in very healthy individuals. Quantifying these changes could help disentangle pathologic changes from those associated with the normal human aging process. Using longitudinal magnetic resonance imaging (MRI) data from 227 carefully selected healthy human cohort with age ranging from 50 to 80 years old at baseline scan, we quantified age-related volumetric changes in the brain of healthy human older adults. Longitudinally, the rates of tissue loss in total gray matter (GM) and white matter (WM) were 2497.5 and 2579.8 mm3 per year, respectively. Across the whole brain, the rates of GM decline varied with regions in the frontal and parietal lobes having faster rates of decline, whereas some regions in the occipital and temporal lobes appeared relatively preserved. In contrast, cross-sectional changes were mainly observed in the temporal-occipital regions. Similar longitudinal atrophic changes were also observed in subcortical regions including thalamus, hippocampus, putamen, and caudate, whereas the pallidum showed an increasing volume with age. Overall, regions maturing late in development (frontal, parietal) are more vulnerable to longitudinal decline, whereas those that fully mature in the early stage (temporal, occipital) are mainly affected by cross-sectional changes in healthy older cohort. This may suggest that, for a successful healthy aging, the former needs to be maximally developed at an earlier age to compensate for the longitudinal decline later in life and the latter to remain relatively preserved even in old age, consistent with both concepts of reserve and brain maintenance.
Assuntos
Envelhecimento , Encéfalo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is one of the most specific prodromal symptoms of synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy. The Japan Parkinson's Progression Markers Initiative (J-PPMI) was a prospective cohort study conducted in Japanese patients with iRBD to investigate biomarkers for prodromal synucleinopathies. We carried out an initial assessment of the J-PPMI study to reveal the factors correlated with dopamine transporter single-photon emission computed tomography (DaT) and 123I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy. METHODS: This cross-sectional study was conducted in 108 patients with iRBD, selected from the J-PPMI study. We divided the patients into four groups based on the MIBG and DaT results. We also recorded the patients' demographics and clinical data. Following PD probability calculation, we examined the biomarkers associated with DaT and MIBG. RESULTS: Ninety-five of the enrolled patients (88%) met the diagnostic criteria for prodromal PD based on the probability score. Only five patients had normal MIBG and DaT. We identified 29 cases with decreased DaT and MIBG, all of whom met the above diagnostic criteria. Both DaT and MIBG were significantly correlated with the Japanese version of the Montreal Cognitive Assessment (MoCA-J) score. CONCLUSION: Both DaT and MIBG are important biomarkers for confirming synucleinopathies and/or staging disease progression. Although 95% of iRBD patients were consistent with the body-first subtype concept, alpha-synuclein pathologies of iRBD might have widespread systemic involvement rather than being confined to the lower brainstem, particularly in patients with reduced MoCA-J scores.
Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/complicações , Proteínas da Membrana Plasmática de Transporte de Dopamina , 3-Iodobenzilguanidina , Japão , alfa-Sinucleína , Estudos Transversais , Estudos Prospectivos , Doença de Parkinson/complicações , BiomarcadoresRESUMO
Objective: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by motor neuron involvement. Although olfactory dysfunction has been described in ALS, clinicoradiological features associated with the olfactory dysfunction remain poorly understood. Methods: We enrolled 30 patients with ALS and age- and sex-matched 53 healthy controls (HCs). All participants underwent the odor stick identification test for Japanese (OSIT-J) and clinical assessments, including disease duration, ALSFRS-R, site of onset, forced vital capacity, and cognitive examinations that reflected the general, executive, memory and language function. We investigated the associations between OSIT-J score and clinical features and examined atrophic changes by voxel-based morphometry (VBM) analysis to MRI. Results: The OSIT-J score was significantly lower in ALS patients than HCs (6.9 ± 3.2 vs. 9.8 ± 1.9, p < 0.001). In ALS, there were significant relationships between OSIT-J score and age at examination, frontal assessment battery, word fluencies, digit span forward, and ADAS-Jcog recognition, but not education, disease type, duration, ALSFRS-R and, %VC. Multiple regression analysis with stepwise method showed the only ADAS-Jcog recognition substantially predicted OSIT-J score. VBM analysis with age, sex, total intracranial volume, and ADAS-Jcog recognition as covariates showed OSIT-J scores were substantially correlated with atrophic changes of left orbital cortex consisting of gyrus rectus and medial orbital gyrus and right hippocampus in ALS. Conclusion: ALS patients could show substantial olfactory dysfunction in association with orbital cortex and hippocampus involvements. The olfactory examination could be a useful marker for screening of frontotemporal alteration in ALS.