Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cancer Sci ; 111(3): 962-973, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31960523

RESUMO

Tumors consist of heterogeneous cell populations that contain cancer cell subpopulations with anticancer drug-resistant properties called "persister" cells. While this early-phase drug tolerance is known to be related to the stem cell-like characteristic of persister cells, how the stem cell-related pathways contribute to drug resistance has remained elusive. Here, we conducted a single-cell analysis based on the stem cell lineage-related and gastric cell lineage-related gene expression in patient-derived gastric cancer cell models. The analyses revealed that 5-fluorouracil (5-FU) induces a dynamic change in the cell heterogeneity. In particular, cells highly expressing stem cell-related genes were enriched in the residual cancer cells after 5-FU treatment. Subsequent functional screening identified aldehyde dehydrogenase 1A3 (ALDH1A3) as a specific marker and potential therapeutic target of persister cells. ALDH1A3 was selectively overexpressed among the ALDH isozymes after treatment with 5-FU or SN38, a DNA topoisomerase I inhibitor. Attenuation of ALDH1A3 expression by RNA interference significantly suppressed cell proliferation, reduced the number of persister cells after anticancer drug treatment and interfered with tumor growth in a mouse xenograft model. Mechanistically, ALDH1A3 depletion affected gene expression of the mammalian target of rapamycin (mTOR) cell survival pathway, which coincided with a decrease in the activating phosphorylation of S6 kinase. Temsirolimus, an mTOR inhibitor, reduced the number of 5FU-tolerant persister cells. High ALDH1A3 expression correlated with worse prognosis of gastric cancer patients. These observations indicate that the ALDH1A3-mTOR axis could be a novel therapeutic target to eradicate drug-tolerant gastric cancer cells.


Assuntos
Aldeído Oxirredutases/genética , Antineoplásicos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Serina-Treonina Quinases TOR/genética , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Br J Cancer ; 121(10): 846-856, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31607750

RESUMO

BACKGROUND: Tumours consist of heterogeneous cancer cells and are likely to contain drug-tolerant cell subpopulations, causing early relapse. However, treatment strategies to eliminate these cells have not been established. METHODS: We established gastric cancer patient-derived cells (PDCs) to examine the contribution of CD44 splicing variant 9 (CD44v9)-positive cells in gastric cancer drug tolerance. We performed gene expression signature-based in silico screening using JFCR_LinCAGE, our anticancer compound gene expression database and subsequent validation in BALB/c-nu/nu mouse xenograft to identify agents targeting the drug-tolerant cancer cells. RESULTS: CD44v9-positive cancer cells were enriched among residual cancer cells after treatment with SN-38, an active metabolic of irinotecan. CD44v9 protein was responsible for this drug resistance. We identified epidermal growth factor receptor (EGFR) inhibitors as agents that can target CD44v9-positive cell populations in gastric cancer PDCs. CD44v9 promoted cell proliferation, and EGFR inhibition attenuated CD44v9 protein expression through downregulation of the AKT and the ERK signalling pathways, leading to preferential suppression of CD44v9-positive cells. Importantly, EGFR inhibitors significantly reduced the number of residual cancer cells after cytotoxic anticancer drug treatment and enhanced the antitumor effect of irinotecan in vivo. CONCLUSIONS: EGFR inhibitors could be potential agents to eradicate cytotoxic anticancer drug-tolerant gastric cancer cell populations.


Assuntos
Antineoplásicos/farmacologia , Receptores de Hialuronatos/genética , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Irinotecano/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
3.
Chemistry ; 17(2): 521-8, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21207569

RESUMO

The distorted coordination structures and luminescence properties of novel lanthanide complexes with oxo-linked bidentate phosphane oxide ligands--4,5-bis(diphenylphosphoryl)-9,9-dimethylxanthene (xantpo), 4,5-bis(di-tert-butylphosphoryl)-9,9-dimethylxanthene (tBu-xantpo), and bis[(2-diphenylphosphoryl)phenyl] ether (dpepo)--and low-vibrational frequency hexafluoroacetylacetonato (hfa) ligands are reported. The lanthanide complexes exhibit characteristic square antiprism and trigonal dodecahedron structures with eight-coordinated oxygen atoms. The luminescence properties of these complexes are characterized by their emission quantum yields, emission lifetimes, and their radiative and nonradiative rate constants. Lanthanide complexes with dodecahedron structures offer markedly high emission quantum yields (Eu: 55-72 %, Sm: 2.4-5.0 % in [D(6)]acetone) due to enhancement of the electric dipole transition and suppression of vibrational relaxation. These remarkable luminescence properties are elucidated in terms of their distorted coordination structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA