Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 171: 106788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37866654

RESUMO

Derivatives of polyunsaturated fatty acids (PUFAs), also known as oxylipins, are key participants in regulating inflammation. Neuroinflammation is involved in many neurodegenerative diseases, including Parkinson's disease. The development of ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) facilitated the study of oxylipins on a system level, i.e., the analysis of oxylipin profiles. We analyzed oxylipin profiles in the blood plasma of 36 healthy volunteers (HC) and 73 patients with Parkinson's disease (PD), divided into early (L\M, 29 patients) or advanced (H, 44 patients) stages based on the Hoehn and Yahr scale. Among the 40 oxylipins detected, we observed a decrease in the concentration of arachidonic acid (AA) and AA derivatives, including anandamide (AEA) and Leukotriene E4 (LTE4), and an increase in the concentration of hydroxyeicosatetraenoic acids 19-HETE and 12-HETE (PD vs HC). Correlation analysis of gender, age of PD onset, and disease stages revealed 20 compounds the concentration of which changed depending on disease stage. Comparison of the acquired oxylipin profiles to openly available PD patient brain transcriptome datasets showed that plasma oxylipins do not appear to directly reflect changes in brain metabolism at different disease stages. However, both the L\M and H stages are characterized by their own oxylipin profiles - in patients with the H stage oxylipin synthesis is increased, while in patients with L\M stages oxylipin synthesis decreases compared to HC. This suggests that different therapeutic approaches may be more effective for patients at early versus late stages of PD.


Assuntos
Oxilipinas , Doença de Parkinson , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Ácidos Graxos Insaturados/metabolismo , Ácido Araquidônico
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673903

RESUMO

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS. This study aimed to investigate the tissue distribution of the CTS ouabain following intraperitoneal injection and whether ouabain passes through the BBB. After intraperitoneal injection (1.25 mg/kg), ouabain concentrations were measured at 5 min, 15 min, 30 min, 1 h, 3 h, 6 h, and 24 h using HPLC-MS in brain, heart, liver, and kidney tissues and blood plasma in C57/black mice. Ouabain was undetectable in the brain tissue. Plasma: Cmax = 882.88 ± 21.82 ng/g; Tmax = 0.08 ± 0.01 h; T1/2 = 0.15 ± 0.02 h; MRT = 0.26 ± 0.01. Cardiac tissue: Cmax = 145.24 ± 44.03 ng/g (undetectable at 60 min); Tmax = 0.08 ± 0.02 h; T1/2 = 0.23 ± 0.09 h; MRT = 0.38 ± 0.14 h. Kidney tissue: Cmax = 1072.3 ± 260.8 ng/g; Tmax = 0.35 ± 0.19 h; T1/2 = 1.32 ± 0.76 h; MRT = 1.41 ± 0.71 h. Liver tissue: Cmax = 2558.0 ± 382.4 ng/g; Tmax = 0.35 ± 0.13 h; T1/2 = 1.24 ± 0.7 h; MRT = 0.98 ± 0.33 h. Unlike digoxin, ouabain does not cross the BBB and is eliminated quicker from all the analyzed tissues, giving it a potential advantage over digoxin in systemic administration. However, the inability of ouabain to pass though the BBB necessitates intracerebral administration when used to investigate its effects on the CNS.


Assuntos
Camundongos Endogâmicos C57BL , Ouabaína , Animais , Distribuição Tecidual , Injeções Intraperitoneais , Camundongos , Masculino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Espectrometria de Massas/métodos , Rim/metabolismo , Rim/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Miocárdio/metabolismo , Cardiotônicos/farmacocinética , Cardiotônicos/farmacologia , Cardiotônicos/administração & dosagem
3.
Biomedicines ; 11(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37509460

RESUMO

In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.

4.
Brain Sci ; 11(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562186

RESUMO

Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.

5.
Eur J Pharmacol ; 886: 173457, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32750366

RESUMO

Multiple organ failure in COVID-19 patients is a serious problem which can result in a fatal outcome. Damage to organs and tissues, including general lung dysfunction, develops as a consequence of ischemia, which, in turn, is caused by thrombosis in small blood vessels and hypoxia, leading to oxidative stress and inflammation. Currently, research is underway to screen existing drugs for antioxidant, antiplatelet and anti-inflammatory properties. Having studied the available publications concerning the mechanisms of damage to tissues and organs of patients with COVID-19, as well as the available treatment strategies, we propose to investigate salicyl-carnosine as a potential drug for treating COVID-19 patients. In a recent study, we described the drug's synthesis procedure, and showed that salicyl-carnosine possesses antioxidant, anti-inflammatory, and antiplatelet effects. Therefore, it can simultaneously act on the three pathogenetic factors involved in tissue and organ damage in COVID-19. Thus, we propose to consider salicyl-carnosine as a potential drug for the treatment of patients with severe cases of COVID-19 infection.


Assuntos
Carnosina/química , Carnosina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Animais , COVID-19 , Carnosina/uso terapêutico , Infecções por Coronavirus/complicações , Infecções por Coronavirus/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/metabolismo
6.
HardwareX ; 8: e00120, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35498269

RESUMO

Stereotaxic intracerebral cannula implantation for neuroactive agent administration is a wide-spread method for chronic experiments requiring bypassing the blood-brain barrier in rodents. However, commercially available cannula are bulky and may interfere with animal movement or lead to their dislodging during grooming. As the number of cannula needed in one experiment, and the accompanying costs can be high, it is in the interest of researchers to produce them on their own. Custom cannula manufacturing also offers the flexibility of different cannula lengths, which is required for agent delivery to various brain structures. In this article we present a protocol for making guide cannula along with the accompanying systems required for injection, which are small, cost-effective, light, easy to make, reusable, and can be made from easily procured materials.

7.
Metabolites ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485807

RESUMO

Wilson's disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD. With UPLC-MS/MS lipidomics analysis, we detected 43 oxylipins in the plasma profiles of 39 patients with various clinical manifestations of WD compared with 16 healthy controls (HCs). Analyzing the similarity matrix of oxylipin profiles allowed us to cluster patients into three groups. Analysis of the data by VolcanoPlot and partial least square discriminant analysis (PLS-DA) showed that eight oxylipins and lipids stand for the variance between WD and HCs: eicosapentaenoic acid EPA, oleoylethanolamide OEA, octadecadienoic acids 9-HODE, 9-KODE, 12-hydroxyheptadecatrenoic acid 12-HHT, prostaglandins PGD2, PGE2, and 14,15-dihydroxyeicosatrienoic acids 14,15-DHET. The compounds indicate the involvement of oxidative stress damage, inflammatory processes, and peroxisome proliferator-activated receptor (PPAR) signaling pathways in this disease. The data reveal novel possible therapeutic targets and intervention strategies for treating WD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA