Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Physiol ; 235(7-8): 5679-5688, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31975377

RESUMO

Deletion of TGFß inducible early gene-1 (TIEG) in mice results in an osteopenic phenotype that exists only in female animals. Molecular analyses on female TIEG knockout (KO) mouse bones identified increased expression of sclerostin, an effect that was confirmed at the protein level in serum. Sclerostin antibody (Scl-Ab) therapy has been shown to elicit bone beneficial effects in multiple animal model systems and human clinical trials. For these reasons, we hypothesized that Scl-Ab therapy would reverse the low bone mass phenotype of female TIEG KO mice. In this study, wildtype (WT) and TIEG KO female mice were randomized to either vehicle control (Veh, n = 12/group) or Scl-Ab therapy (10 mg/kg, 1×/wk, s.c.; n = 12/group) and treated for 6 weeks. Following treatment, bone imaging analyses revealed that Scl-Ab therapy significantly increased cancellous and cortical bone in the femur of both WT and TIEG KO mice. Similar effects also occurred in the vertebra of both WT and TIEG KO animals. Additionally, histomorphometric analyses revealed that Scl-Ab therapy resulted in increased osteoblast perimeter/bone perimeter in both WT and TIEG KO animals, with a concomitant increase in P1NP, a serum marker of bone formation. In contrast, osteoclast perimeter/bone perimeter and CTX-1 serum levels were unaffected by Scl-Ab therapy, irrespective of mouse genotype. Overall, our findings demonstrate that Scl-Ab therapy elicits potent bone-forming effects in both WT and TIEG KO mice and effectively increases bone mass in female TIEG KO mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Ósseas Metabólicas/genética , Proteínas de Ligação a DNA/genética , Osteogênese/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/sangue , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Anticorpos/farmacologia , Densidade Óssea/genética , Desenvolvimento Ósseo/genética , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/imunologia , Doenças Ósseas Metabólicas/patologia , Feminino , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo
2.
Arthritis Rheum ; 65(3): 721-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23233270

RESUMO

OBJECTIVE: Sclerostin plays a major role in regulating skeletal bone mass, but its effects in articular cartilage are not known. The purpose of this study was to determine whether genetic loss or pharmacologic inhibition of sclerostin has an impact on knee joint articular cartilage. METHODS: Expression of sclerostin was determined in articular cartilage and bone tissue obtained from mice, rats, and human subjects, including patients with knee osteoarthritis (OA). Mice with genetic knockout (KO) of sclerostin and pharmacologic inhibition of sclerostin with a sclerostin-neutralizing monoclonal antibody (Scl-Ab) in aged male rats and ovariectomized (OVX) female rats were used to study the effects of sclerostin on pathologic processes in the knee joint. The rat medial meniscus tear (MMT) model of OA was used to investigate the pharmacologic efficacy of systemic Scl-Ab or intraarticular (IA) delivery of a sclerostin antibody-Fab (Scl-Fab) fragment. RESULTS: Sclerostin expression was detected in rodent and human articular chondrocytes. No difference was observed in the magnitude or distribution of sclerostin expression between normal and OA cartilage or bone. Sclerostin-KO mice showed no difference in histopathologic features of the knee joint compared to age-matched wild-type mice. Pharmacologic treatment of intact aged male rats or OVX female rats with Scl-Ab had no effect on morphologic characteristics of the articular cartilage. In the rat MMT model, pharmacologic treatment of animals with either systemic Scl-Ab or IA injection of Scl-Fab had no effect on lesion development or severity. CONCLUSION: Genetic absence of sclerostin does not alter the normal development of age-dependent OA in mice, and pharmacologic inhibition of sclerostin with Scl-Ab has no impact on articular cartilage remodeling in rats with posttraumatic OA.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Cartilagem Articular/lesões , Cartilagem Articular/fisiologia , Marcadores Genéticos/genética , Glicoproteínas/genética , Osteoartrite do Joelho/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Envelhecimento/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Proteínas Morfogenéticas Ósseas/metabolismo , Condrócitos/fisiologia , Feminino , Expressão Gênica/fisiologia , Marcadores Genéticos/imunologia , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Traumatismos do Joelho/genética , Traumatismos do Joelho/metabolismo , Traumatismos do Joelho/fisiopatologia , Articulação do Joelho/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley , Bancos de Tecidos
3.
Bioorg Med Chem Lett ; 19(7): 2075-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19250823

RESUMO

Sulfonamides, exemplified by 3a, were identified as highly selective EP(2) agonists. Lead optimization led to the identification of CP-533536, 7f, a potent and selective EP(2) agonist. CP-533536 demonstrated the ability to heal fractures when administered locally as a single dose in rat models of fracture healing.


Assuntos
Osteogênese/efeitos dos fármacos , Piridinas/química , Receptores de Prostaglandina E/agonistas , Animais , Masculino , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP2 , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
4.
J Orthop Res ; 36(4): 1106-1113, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884841

RESUMO

Neutralizing monoclonal sclerostin antibodies are effective in promoting bone formation at a systemic level and in orthopedic scenarios including closed fracture repair. In this study we examined the effects of sclerostin antibody (Scl-Ab) treatment on regenerate volume, density, and strength in a rat model of distraction osteogenesis. Surgical osteotomy was performed on 179 Sprague Dawley rats. After 1 week, rats underwent distraction for 2 weeks, followed by 6 weeks for consolidation. Two treatment groups received biweekly subcutaneous Scl-AbIII (a rodent form of Scl-Ab; 25 mg/kg), either from the start of distraction onward or restricted to the consolidation phase. These groups were compared to controls receiving saline. Measurement modalities included longitudinal DXA, ex vivo QCT, and microCT, tissue histology, and biomechanical four-point bending tests. Bone volume was increased in both Scl-Ab treatments regimens by the end of consolidation (+26-38%, p < 0.05), as assessed by microCT. This was associated with increased mineral apposition. Importantly, Scl-Ab led to increased strength in united bones, and this reached statistical significance in animals receiving Scl-Ab during consolidation only (+177%, p < 0.01, maximum load to failure). These data demonstrate that Scl-Ab treatment increases bone formation, leading to regenerates with higher bone volume and improved strength. Our data also suggest that the optimal effects of Scl-Ab treatment are achieved in the latter stages of distraction osteogenesis. These findings support further investigation into the potential clinical application of sclerostin antibody to augment bone distraction, such as limb lengthening, particularly in the prevention of refracture. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1106-1113, 2018.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Regeneração Óssea/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteogênese por Distração , Osteogênese/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fêmur/cirurgia , Masculino , Osteotomia , Ratos Sprague-Dawley , Suporte de Carga
5.
J Bone Miner Res ; 19(4): 642-51, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15005852

RESUMO

UNLABELLED: Nucleotides, released in response to mechanical and other stimuli, act on P2 receptors in osteoclasts and other cell types. In vitro studies of osteoclasts from rabbits and P2X7 receptor-deficient mice revealed that P2X7 receptors couple to activation of the key transcription factor NF-kappaB. INTRODUCTION: Osteoclasts express functional P2X4 and P2X7 receptors, which are ATP-gated cation channels. Knockout (KO) of the P2X7 receptor has revealed its role in regulating bone formation and resorption, but the underlying signals are not known. The transcription factor NF-kappaB plays a key role in the response of osteoclasts to RANKL and other cytokines. The aim of this study was to examine whether P2X receptors on osteoclasts signal through NF-kappaB. MATERIALS AND METHODS: Osteoclasts were isolated from neonatal rabbits or wildtype (WT) and P2X7 receptor KO mice. Immunofluorescence was used to detect the p65 subunit of NF-kappaB, which, on activation, translocates from the cytosol to the nuclei. The concentration of cytosolic free Ca2+ ([Ca2+]i) was monitored in single osteoclasts loaded with fura-2. RESULTS: In control samples, few rabbit osteoclasts demonstrated nuclear localization of NF-kappaB. Benzoyl-benzoyl-ATP (BzATP, a P2X7 agonist, 300 microM) induced nuclear translocation of NF-kappaB after 3 h in approximately 45% of rabbit osteoclasts. In contrast, a low concentration of ATP (10 microM, sufficient to activate P2X4 and P2Y2, but not P2X7 receptors) did not induce nuclear translocation of NF-kappaB. Because BzATP activates multiple P2 receptors, we examined responses of osteoclasts derived from WT and P2X7 receptor KO mice. Treatment with BzATP for 30 minutes increased nuclear localization of NF-kappaB in osteoclasts from WT but not KO mice, showing involvement of P2X7 receptors. Both ATP (10 microM) and BzATP (300 microM) caused transient elevation of [Ca2+]i, indicating that rise of calcium alone is not sufficient to activate NF-kappaB. Pretreatment of rabbit osteoclasts with osteoprotegerin inhibited translocation of NF-kappaB induced by RANKL but not by BzATP, establishing that the effects of BzATP are independent of RANKL signaling. CONCLUSION: These findings show that P2X7 nucleotide receptors couple to activation of NF-kappaB in osteoclasts. Thus, nucleotides, released at sites of inflammation or in response to mechanical stimuli, may act through NF-kappaB to regulate osteoclast formation and activity.


Assuntos
Trifosfato de Adenosina/análogos & derivados , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Proteínas de Transporte/farmacologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Knockout , Inibidores da Agregação Plaquetária/farmacologia , Agonistas do Receptor Purinérgico P2 , Ligante RANK , Coelhos , Receptor Ativador de Fator Nuclear kappa-B , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7
6.
Bone ; 67: 305-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25093263

RESUMO

Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague-Dawley rats had OVX or sham surgery. Two months later, sham controls received sc vehicle while OVX rats received vehicle (OVX-Veh) or Scl-Ab (25mg/kg) once weekly for 6 or 26weeks followed by necropsy (n=12/group). Terminal blood was collected for biochemistry, non-adherent marrow cells were harvested from femurs for ex vivo osteoclast formation assays, and vertebrae and tibiae were collected for dynamic histomorphometry and mRNA analyses. Scl-Ab treatment led to progressively thicker but fewer trabeculae in the vertebra, leading to increased trabecular bone volume and reduced trabecular surfaces. Scl-Ab also increased cortical bone volume in the tibia, via early periosteal expansion and progressive endocortical contraction. Scl-Ab significantly reduced parameters of bone resorption at week 6 relative to OVX-Veh controls, including reduced serum TRACP-5b, reduced capacity of marrow cells to form osteoclasts ex vivo, and >80% reductions in vertebral trabecular and tibial endocortical eroded surfaces. At week 26, serum TRACP-5b and ex vivo osteoclast formation were no longer reduced in the Scl-Ab group, but eroded surfaces remained >80% lower than in OVX-Veh controls without evidence for altered skeletal mRNA expression of opg or rankl. Scl-Ab significantly increased parameters of bone formation at week 6 relative to OVX-Veh controls, including increases in serum P1NP and osteocalcin, and increased trabecular, endocortical and periosteal bone formation rates (BFRs). At week 26, surface-referent trabecular BFR remained significantly increased in the Scl-Ab group versus OVX-Veh controls, but after adjusting for a reduced extent of trabecular surfaces, overall (referent-independent) trabecular BFR was no longer significantly elevated. Similarly, serum P1NP and osteocalcin were no longer significantly increased in the Scl-Ab group at week 26. Tibial endocortical and periosteal BFR were increased at week 6 in the Scl-Ab group versus OVX-Veh controls, while at week 26 only endocortical BFR remained increased. The Scl-Ab group exhibited significant increments in skeletal mRNA expression of several osteocyte genes, with sost showing the greatest induction in both the tibia and vertebra. We propose that Scl-Ab administration, and/or the gains in bone volume that result, may have increased osteocytic expression of Scl as a possible means of regulating gains in bone mass.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Marcadores Genéticos/imunologia , Animais , Anticorpos/administração & dosagem , Densidade Óssea/efeitos dos fármacos , Feminino , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley
7.
J Orthop Res ; 31(1): 155-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22887736

RESUMO

Sclerostin is a glycoprotein secreted by osteocytes and inhibits osteoblastogenesis via inhibition of Wnt signaling. We hypothesized that sclerostin antibody (Scl-AbIII) would accelerate the healing of a murine femoral non-critical size bone defect model. A unilateral and unicortical 0.8 mm-sized drill hole was made in the proximal femoral shaft of adult female nude mice. One group of mice received subcutaneous injections of Scl-AbIII and a second group received vehicle only. Reporter MC3T3 osteoprogenitor cells were injected via the tail vein 3 days after surgery to monitor systemic trafficking of exogenous osteoprogenitors. Bioluminescence imaging (BLI), microcomputed tomography (microCT), micropositron emission tomography (microPET) and histological analysis were used to compare the bone healing responses to Scl-AbIII treatment. Bone mineral density (BMD) significantly increased at the defect site after week 1, and was significantly higher in the treatment compared with the control group at all time points. This finding was also confirmed on histological analysis by increased deposition of new woven bone. MicroPET scanning showed a trend for greater activity in the control group at day 21 compared with the Scl-AbIII group, indicating early bone maturation following treatment with Scl-AbIII. Whereas the BLI signals derived from the injected osteoprogenitor cells showed no differences between vehicle and Scl-AbIII treated groups, systemic migration of MC3T3 cells to the bone defect was clearly identified in both groups using immunohistochemistry. Systemic administration of Scl-AbIII resulted in earlier healing and maturation of a non-critical size bone defect. These findings underscore the potential use of Scl-AbIII for treatment of complicated fractures, non-unions, and other clinical scenarios.


Assuntos
Anticorpos Monoclonais/farmacologia , Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura/efeitos dos fármacos , Glicoproteínas/imunologia , Osteoblastos/citologia , Transplante de Células-Tronco/métodos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fraturas do Fêmur/metabolismo , Consolidação da Fratura/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Luciferases/genética , Camundongos , Camundongos Nus , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Índices de Gravidade do Trauma , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
8.
J Bone Miner Res ; 28(11): 2347-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23712325

RESUMO

The reconstruction of large osseous defects due to periodontitis is a challenge in regenerative therapy. Sclerostin, secreted by osteocytes, is a key physiological inhibitor of osteogenesis. Pharmacologic inhibition of sclerostin using sclerostin-neutralizing monoclonal antibody (Scl-Ab) thus increases bone formation, bone mass and bone strength in models of osteopenia and fracture repair. This study assessed the therapeutic potential of Scl-Ab to stimulate alveolar bone regeneration following experimental periodontitis (EP). Ligature-induced EP was induced in rats to generate localized alveolar bone defects. Following 4 weeks of disease induction, Scl-Ab (+EP) or vehicle (+/- EP) were systemically delivered, twice weekly for up to 6 wks to determine the ability of Scl-Ab to regenerate bone around tooth-supporting osseous defects. 3 and 6 wks after the initiation of Scl-Ab or vehicle treatment, femur and maxillary jawbones were harvested for histology, histomorphometry, and micro-computed tomography (micro-CT) of linear alveolar bone loss (ABL) and volumetric measures of bone support, including bone volume fraction (BVF) and tissue mineral density (TMD). Serum was analyzed to examine bone turnover markers during disease and regenerative therapy. Vehicle + EP animals exhibited maxillary bone loss (BVF, TMD and ABL) at ligature removal and thereafter. 6 weeks of Scl-Ab significantly improved maxillary bone healing, as measured by BVF, TMD and ABL, when compared to vehicle + EP. After 6 weeks of treatment, BVF and TMD values in the Scl-Ab + EP group were similar to those of healthy controls. Serum analysis demonstrated higher levels of bone formation markers osteocalcin and PINP in Scl-Ab treatment groups. Scl-Ab restored alveolar bone mass following experimental periodontitis. These findings warrant further exploration of Scl-Ab therapy in this and other oral bone defect disease scenarios.


Assuntos
Anticorpos/farmacologia , Anticorpos/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Regeneração Óssea/efeitos dos fármacos , Marcadores Genéticos/imunologia , Periodontite/tratamento farmacológico , Periodontite/fisiopatologia , Perda do Osso Alveolar/sangue , Perda do Osso Alveolar/complicações , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/patologia , Animais , Biomarcadores/sangue , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Periodontite/sangue , Periodontite/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
9.
J Bone Miner Res ; 26(5): 1012-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21542004

RESUMO

Therapeutic enhancement of fracture healing would help to prevent the occurrence of orthopedic complications such as nonunion and revision surgery. Sclerostin is a negative regulator of bone formation, and treatment with a sclerostin monoclonal antibody (Scl-Ab) results in increased bone formation and bone mass in animal models. Our objective was to investigate the effects of systemic administration of Scl-Ab in two models of fracture healing. In both a closed femoral fracture model in rats and a fibular osteotomy model in cynomolgus monkeys, Scl-Ab significantly increased bone mass and bone strength at the site of fracture. After 10 weeks of healing in nonhuman primates, the fractures in the Scl-Ab group had less callus cartilage and smaller fracture gaps containing more bone and less fibrovascular tissue. These improvements at the fracture site corresponded with improvements in bone formation, bone mass, and bone strength at nonfractured cortical and trabecular sites in both studies. Thus the potent anabolic activity of Scl-Ab throughout the skeleton also was associated with an anabolic effect at the site of fracture. These results support the potential for systemic Scl-Ab administration to enhance fracture healing in patients.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Densidade Óssea/efeitos dos fármacos , Fraturas do Fêmur/fisiopatologia , Consolidação da Fratura/efeitos dos fármacos , Glicoproteínas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Diáfises/efeitos dos fármacos , Diáfises/patologia , Diáfises/fisiopatologia , Modelos Animais de Doenças , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiopatologia , Fíbula/efeitos dos fármacos , Fíbula/patologia , Fíbula/fisiopatologia , Glicoproteínas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Macaca fascicularis , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteotomia , Ratos , Ratos Sprague-Dawley
10.
J Bone Miner Res ; 24(7): 1234-46, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19257823

RESUMO

RANKL is an essential mediator of bone resorption, and its activity is inhibited by osteoprotegerin (OPG). Transgenic (Tg) rats were engineered to continuously overexpress OPG to study the effects of continuous long-term RANKL inhibition on bone volume, density, and strength. Lumbar vertebrae, femurs, and blood were obtained from 1-yr-old female OPG-Tg rats (n = 32) and from age-matched wildtype (WT) controls (n = 23). OPG-Tg rats had significantly greater serum OPG (up to 260-fold) and significantly lower serum TRACP5b and osteocalcin compared with WT controls. Vertebral histomorphometry showed significant reductions in osteoclasts and bone turnover parameters in OPG-Tg rats versus WT controls, and these reductions were associated with significantly greater peak load in vertebrae tested through compression. No apparent differences in bone material properties were observed in OPG-Tg rat vertebrae, based on their unchanged intrinsic strength parameters and their normal linear relationship between vertebral bone mass and strength. Femurs from OPG-Tg rats were of normal length but showed mild osteopetrotic changes, including reduced periosteal perimeter (-6%) and an associated reduction in bending strength. Serum OPG levels in WT rats showed no correlations with any measured parameter of bone turnover, mass, or strength, whereas the supraphysiological serum OPG levels in OPG-Tg rats correlated negatively with bone turnover parameters and positively with vertebral bone mass and strength parameters. In summary, low bone turnover after 1 yr of OPG overexpression in rats was associated with increased vertebral bone mass and proportional increases in bone strength, with no evidence for deleterious effects on vertebral material properties.


Assuntos
Densidade Óssea , Expressão Gênica , Vértebras Lombares/crescimento & desenvolvimento , Osteoprotegerina/biossíntese , Animais , Remodelação Óssea , Feminino , Vértebras Lombares/metabolismo , Tamanho do Órgão , Osteoclastos/metabolismo , Osteopetrose/metabolismo , Osteoprotegerina/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Fatores de Tempo
11.
J Bone Miner Res ; 23(5): 672-82, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18433301

RESUMO

INTRODUCTION: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats. MATERIALS AND METHODS: Rats were OVX or sham-operated at 3 mo of age. Sham controls were treated for 6 wk with vehicle (Veh, PBS). OVX rats were treated with Veh or human OPG-Fc (10 mg/kg, 2/wk). Serum RANKL and TRACP5b was measured by ELISA. BMD of lumbar vertebrae (L(1)-L(5)) and distal femur was measured by DXA. Right distal femurs were processed for bone histomorphometry. Left femurs and the fifth lumbar vertebra (L(5)) were analyzed by muCT and biomechanical testing, and L(6) was analyzed for ash weight. RESULTS: OVX was associated with significantly greater serum RANKL and osteoclast surface and with reduced areal and volumetric BMD. OPG markedly reduced osteoclast surface and serum TRACP5b while completely preventing OVX-associated bone loss in the lumbar vertebrae, distal femur, and femur neck. Vertebrae from OPG-treated rats had increased dry and ash weight, with no significant differences in tissue mineralization versus OVX controls. muCT showed that trabecular compartments in OVX-OPG rats had significantly greater bone volume fraction, vBMD, bone area, trabecular thickness, and number, whereas their cortical compartments had significantly greater bone area (p < 0.05 versus OVX-Veh). OPG improved cortical area in L(5) and the femur neck to levels that were significantly greater than OVX or sham controls (p < 0.05). Biomechanical testing of L(5) and femur necks showed significantly greater maximum load values in the OVX-OPG group (p < 0.05 versus OVX-Veh). Bone strength at both sites was linearly correlated with total bone area (r(2) = 0.54-0.74, p < 0.0001), which was also significantly increased by OPG (p < 0.05 versus OVX). CONCLUSIONS: OPG treatment prevented bone loss, preserved trabecular architecture, and increased cortical area and bone strength in OVX rats.


Assuntos
Osso e Ossos/anatomia & histologia , Osteoprotegerina/fisiologia , Ovariectomia , Ligante RANK/antagonistas & inibidores , Animais , Feminino , Ligante RANK/genética , Ratos , Ratos Sprague-Dawley
12.
J Biol Chem ; 282(5): 3403-12, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17135244

RESUMO

Extracellular nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 receptors in many cell types, including osteoblasts. P2X7 receptors are ATP-gated cation channels that can induce formation of large membrane pores. Disruption of the gene encoding the P2X7 receptor leads to decreased periosteal bone formation and insensitivity of the skeleton to mechanical stimulation. Our purpose was to investigate signaling pathways coupled to P2X7 activation in osteoblasts. Live cell imaging showed that ATP or 2 ',3 '-O-(4-benzoylbenzoyl)-ATP (BzATP), but not UTP, UDP, or 2-methylthio-ADP, induced dynamic membrane blebbing in calvarial osteoblasts. Blebbing was observed in calvarial cells from wildtype but not P2X7 knock-out mice. P2X7 receptors coupled to activation of phospholipase D and A2, inhibition of which suppressed BzATP-induced blebbing. Activation of these phospholipases leads to production of lysophosphatidic acid (LPA). LPA caused dynamic blebbing in osteoblasts from both wild-type and P2X7 knock-out mice, similar to that induced by BzATP in wildtype cells. However, LPA-induced blebbing was more rapid in onset and was not affected by inhibition of phospholipase D or A2. Blockade or desensitization of LPA receptors suppressed blebbing in response to LPA and BzATP, without affecting P2X7-stimulated pore formation. Thus, LPA functions downstream of P2X7 receptors to induce membrane blebbing. Furthermore, inhibition of Rho-associated kinase abolished blebbing induced by both BzATP and LPA. In summary, we propose a novel signaling axis that links P2X7 receptors through phospholipases to production of LPA and activation of Rho-associated kinase. This pathway may contribute to P2X7-stimulated osteogenesis during skeletal development and mechanotransduction.


Assuntos
Lisofosfolipídeos/fisiologia , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Fosfolipases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X7 , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA