Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Motil Cytoskeleton ; 66(8): 457-68, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19253336

RESUMO

The primary cilium plays a key role in the development of mammals and in the maintenance of health. Primary cilia are assembled and maintained by the process of intraflagellar transport (IFT). In this work, we characterize mouse IFT complex B by identifying all of the mammalian orthologues of complex B and B-associated proteins previously identified in Chlamydomonas and Caenorhabditis and also identify a new component (IFT25/Hspb11) of complex B by database analysis. We tagged each of these proteins with the FLAG epitope and show that all except IFT172 and IFT20 localize to cilia and the peri-basal body or centrosomal region at the base of cilia. All of the proteins except IFT172 immunoprecipitate IFT88 indicating that they are co-assembled into a complex. IFT20 is the only complex B protein that localizes to the Golgi apparatus. However, overexpression of IFT54/Traf3ip1, the mouse orthologue of Dyf-11/Elipsa, displaces IFT20 from the Golgi apparatus. IFT54 does not localize to the Golgi complex nor does it interact with GMAP210, which is the protein that anchors IFT20 to the Golgi apparatus. This suggests that IFT54s effect on IFT20 is a dominant negative phenotype caused by its overexpression. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Linhagem Celular , Cílios/metabolismo , Proteínas do Citoesqueleto , Flagelos/metabolismo , Complexo de Golgi/metabolismo , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Supressoras de Tumor/metabolismo
2.
Cytoskeleton (Hoboken) ; 71(5): 302-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24619649

RESUMO

In the vertebrate retina, light is detected by the outer segments of photoreceptor rods and cones, which are highly modified cilia. Like other cilia, outer segments have no protein synthetic capacity and depend on proteins made in the cell body for their formation and maintenance. The mechanism of transport into the outer segment is not fully understood but intraflagellar transport (IFT) is thought to be a major mechanism for moving protein from the cell body into the cilium. In the case of photoreceptor cells, the high density of receptors and the disk turnover that occurs daily necessitates much higher rates of transport than would be required in other cilia. In this work, we show that the IFT complex A protein IFT140 is required for development and maintenance of outer segments. In earlier work we found that acute deletion of Ift20 caused opsin to accumulate at the Golgi complex. In this work, we find that acute deletion of Ift140 does not cause opsin to accumulate at the Golgi complex but rather it accumulates in the plasma membrane of the inner segments. This work is a strong support of a model of opsin transport where IFT20 is involved in the movement from the Golgi complex to the base of the cilium. Then, once at the base, the opsin is carried through the connecting cilium by an IFT complex that includes IFT140. © 2014 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/metabolismo , Cílios/metabolismo , Opsinas/metabolismo , Células Fotorreceptoras/metabolismo , Animais , Cílios/ultraestrutura , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras/ultraestrutura , Transporte Proteico/fisiologia
3.
Dev Cell ; 31(3): 279-290, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25446516

RESUMO

Vertebrate hedgehog signaling is coordinated by the differential localization of the receptors patched-1 and Smoothened in the primary cilium. Cilia assembly is mediated by intraflagellar transport (IFT), and cilia defects disrupt hedgehog signaling, causing many structural birth defects. We generated Ift25 and Ift27 knockout mice and show that they have structural birth defects indicative of hedgehog signaling dysfunction. Surprisingly, ciliary assembly is not affected, but abnormal hedgehog signaling is observed in conjunction with ciliary accumulation of patched-1 and Smoothened. Similarly, Smoothened accumulates in cilia on cells mutated for BBSome components or the BBS binding protein/regulator Lztfl1. Interestingly, the BBSome and Lztfl1 accumulate to high levels in Ift27 mutant cilia. Because Lztfl1 mutant cells accumulate BBSome but not IFT27, it is likely that Lztfl1 functions downstream of IFT27 to couple the BBSome to the IFT particle for coordinated removal of patched-1 and Smoothened from cilia during hedgehog signaling.


Assuntos
Cílios/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Flagelos/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo
4.
Dev Cell ; 22(5): 940-51, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22595669

RESUMO

The intraflagellar transport (IFT) system is required for building primary cilia, sensory organelles that cells use to respond to their environment. IFT particles are composed of about 20 proteins, and these proteins are highly conserved across ciliated species. IFT25, however, is absent from some ciliated organisms, suggesting that it may have a unique role distinct from ciliogenesis. Here, we generate an Ift25 null mouse and show that IFT25 is not required for ciliary assembly but is required for proper Hedgehog signaling, which in mammals occurs within cilia. Mutant mice die at birth with multiple phenotypes, indicative of Hedgehog signaling dysfunction. Cilia lacking IFT25 have defects in the signal-dependent transport of multiple Hedgehog components including Patched-1, Smoothened, and Gli2, and fail to activate the pathway upon stimulation. Thus, IFT function is not restricted to building cilia where signaling occurs, but also plays a separable role in signal transduction events.


Assuntos
Flagelos/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Transporte Biológico , Técnicas de Cultura de Células , Cílios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened , Proteína Gli2 com Dedos de Zinco
5.
Mol Biol Cell ; 22(7): 921-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21307337

RESUMO

The light-detecting outer segments of vertebrate photoreceptors are cilia. Like other cilia, all materials needed for assembly and maintenance are synthesized in the cell body and transported into the cilium. The highly elaborated nature of the outer segment and its high rate of turnover necessitate unusually high levels of transport into the cilium. In this work, we examine the role of the IFT20 subunit of the intraflagellar transport (IFT) particle in photoreceptor cells. IFT20 was deleted in developing cones by a cone-specific Cre and in mature rods and cones by a tamoxifen-activatable Cre. Loss of IFT20 during cone development leads to opsin accumulation in the inner segment even when the connecting cilium and outer segment are still intact. With time this causes cone cell degeneration. Similarly, deletion of IFT20 in mature rods causes rapid accumulation of rhodopsin in the cell body, where it is concentrated at the Golgi complex. We further show that IFT20, acting both as part of the IFT particle and independent of the particle, binds to rhodopsin and RG-opsin. Since IFT20 dynamically moves between the Golgi complex and the connecting cilium, the current work suggests that rhodopsin and opsins are cargo for IFT transport.


Assuntos
Proteínas de Transporte/metabolismo , Cílios/metabolismo , Opsinas/metabolismo , Transporte Proteico , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Animais , Proteínas de Transporte/genética , Cílios/ultraestrutura , Camundongos , Camundongos Knockout , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
6.
J Cell Sci ; 120(Pt 6): 1093-103, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17344432

RESUMO

Meiotic progression in Xenopus oocytes, and all other oocytes investigated, is dependent on polyadenylation-induced translation of stockpiled maternal mRNAs. Early during meiotic resumption, phosphorylation of CPE-binding protein (CPEB) is required for polyadenylation-induced translation of mRNAs encoding cell cycle regulators. Xenopus Gef (XGef), a Rho-family guanine-exchange factor, influences the activating phosphorylation of CPEB. An exchange-deficient version of XGef does not, therefore implicating Rho-family GTPase function in early meiosis. We show here that Clostridium difficile Toxin B, a Rho-family GTPase inhibitor, does not impair early CPEB phosphorylation or progression to germinal vesicle breakdown, indicating that XGef does not influence these events through activation of a Toxin-B-sensitive GTPase. Using the inhibitors U0126 for mitogen-activated protein kinase (MAPK), and ZM447439 for Aurora kinase A and Aurora kinase B, we found that MAPK is required for phosphorylation of CPEB, whereas Aurora kinases are not. Furthermore, we do not detect active Aurora kinase A in early meiosis. By contrast, we observe an early, transient activation of MAPK, independent of Mos protein expression. MAPK directly phosphorylates CPEB on four residues (T22, T164, S184, S248), but not on S174, a key residue for activating CPEB function. Notably, XGef immunoprecipitates contain MAPK, and this complex can phosphorylate CPEB. MAPK may prime CPEB for phosphorylation on S174 by an as-yet-unidentified kinase or may activate this kinase.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Meiose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Oócitos/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/fisiologia , Animais , Aurora Quinases , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Benzamidas/farmacologia , Butadienos/farmacologia , Ativação Enzimática , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Nitrilas/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mos/metabolismo , Quinazolinas/farmacologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia
7.
Biochem Biophys Res Commun ; 297(3): 573-80, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12270133

RESUMO

The ATP(CTP):tRNA nucleotidyltransferase (CCA-adding enzyme) adds CCA to the 3(') end of immature or damaged tRNAs. It is reported on here the cloning, expression analysis, and functional characterization of the Xenopus CCA-adding enzyme, XCCA (GenBank Accession #AF466151). It is demonstrated that XCCA adds cytosine and adenosine residues to the ends of prepared tRNA and is therefore a functional CCA-adding enzyme. XCCA is encoded by a rare mRNA present at less than 0.001% of the cellular mRNA in all adult tissues examined. The mRNA is expressed as two transcripts of 1.5 and 2.3kb, generated through differential utilization of two transcription start sites and two 3' cleavage and polyadenylation sites. Utilization of the most 5' transcription initiation site produces an mRNA encoding a putative mitochondrial import sequence. It is anticipated that the Xenopus oocyte will be an excellent system for analyzing the regulation of XCCA expression and the intracellular targeting of the XCCA enzyme.


Assuntos
Trifosfato de Adenosina/metabolismo , Citidina Trifosfato/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , RNA Nucleotidiltransferases/genética , RNA Mensageiro/genética , Transcrição Gênica , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Códon/genética , Sequência Conservada , Citosina/metabolismo , Primers do DNA , DNA Complementar , Feminino , Biblioteca Gênica , Humanos , Mamíferos , Dados de Sequência Molecular , Oócitos/fisiologia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Xenopus
8.
Dev Biol ; 255(2): 383-98, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12648498

RESUMO

XGef was isolated in a screen for proteins interacting with CPEB, a regulator of mRNA translation in early Xenopus development. XGef is a Rho-family guanine nucleotide exchange factor and activates Cdc42 in mammalian cells. Endogenous XGef (58 kDa) interacts with recombinant CPEB, and recombinant XGef interacts with endogenous CPEB in Xenopus oocytes. Injection of XGef antibodies into stage VI Xenopus oocytes blocks progesterone-induced oocyte maturation and prevents the polyadenylation and translation of c-mos mRNA; injection of XGef rescues these events. Overexpression of XGef in oocytes accelerates progesterone-induced oocyte maturation and the polyadenylation and translation of c-mos mRNA. Overexpression of a nucleotide exchange deficient version of XGef, which retains the ability to interact with CPEB, no longer accelerates oocyte maturation or Mos synthesis, suggesting that XGef exchange factor activity is required for the influence of overexpressed XGef on oocyte maturation. XGef overexpression continues to accelerate c-mos polyadenylation in the absence of Mos protein, but does not stimulate MAPK phosphorylation, MPF activation, or oocyte maturation, indicating that XGef may function through the Mos pathway to influence oocyte maturation. These results suggest that XGef may be an early acting component of the progesterone-induced oocyte maturation pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes mos , Fatores de Troca do Nucleotídeo Guanina/genética , Técnicas In Vitro , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Progesterona/farmacologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-mos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Xenopus/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA