Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vox Sang ; 118(8): 674-680, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37366233

RESUMO

BACKGROUND AND OBJECTIVES: Hepatitis E virus (HEV) is an underrecognized and emerging infectious disease that may threaten the safety of donor blood supply in many parts of the world. We sought to elucidate whether our local community blood supply is at increased susceptibility for transmission of transfusion-associated HEV infections. MATERIALS AND METHODS: We screened 10,002 randomly selected donations over an 8-month period between 2017 and 2018 at the Stanford Blood Center for markers of HEV infection using commercial IgM/IgG serological tests and reverse transcriptase quantitative polymerase chain reaction assays (RT-qPCR). Donor demographic information, including gender, age, self-identified ethnicity, location of residence and recent travel, were obtained from the donor database and used to generate multivariate binary logistic regressions for risk factors of IgG seropositivity. RESULTS: A total of 10,002 blood donations from 7507 unique donors were screened, and there was no detectable HEV RNA by RT-qPCR. The overall seropositivity rate was 12.1% for IgG and 0.56% for IgM. Multivariate analysis of unique donors revealed a significantly higher risk of IgG seropositivity with increasing age, White/Asian ethnicities and residence in certain local counties. CONCLUSION: Although HEV IgG seroprevalence in the San Francisco Bay Area is consistent with ongoing infection, the screening of a large donor population did not identify any viraemic blood donors. While HEV is an underrecognized and emerging infection in other regions, there is no evidence to support routine blood screening for HEV in our local blood supply currently; however, periodic monitoring may still be required to assess the ongoing risk.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Doadores de Sangue , Anticorpos Anti-Hepatite , Hepatite E/epidemiologia , Vírus da Hepatite E/genética , Imunoglobulina G , Imunoglobulina M , RNA Viral , Estudos Soroepidemiológicos , Masculino , Feminino
2.
Front Immunol ; 9: 1194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904384

RESUMO

Hepatitis C virus (HCV) continues to spread worldwide with an annual increase of 1.75 million new infections. The number of HCV cases in the U.S. is now greater than the number of HIV cases and is increasing in young adults because of the opioid epidemic sweeping the country. HCV-related liver disease is the leading indication of liver transplantation. An effective vaccine is of paramount importance to control and prevent HCV infection. While this vaccine will need to induce both cellular and humoral immunity, this review is focused on the required antibody responses. For highly variable viruses, such as HCV, isolation and characterization of monoclonal antibodies mediating broad virus neutralization are an important guide for vaccine design. The viral envelope glycoproteins, E1 and E2, are the main targets of these antibodies. Epitopes on the E2 protein have been studied more extensively than epitopes on E1, due to higher antibody targeting that reflects these epitopes having higher degrees of immunogenicity. E2 epitopes are overall organized in discrete clusters of overlapping epitopes that ranged from high conservation to high variability. Other epitopes on E1 and E1E2 also are targets of neutralizing antibodies. Taken together, these regions are important for vaccine design. Another element in vaccine design is based on information on how the virus escapes from broadly neutralizing antibodies. Escape mutations can occur within the epitopes that are involved in antibody binding and in regions that are not involved in their epitopes, but nonetheless reduce the efficiency of neutralizing antibodies. An understanding on the specificities of a protective B cell response, the molecular locations of these epitopes on E1, E2, and E1E2, and the mechanisms, which enable the virus to negatively modulate neutralizing antibody responses to these regions will provide the necessary guidance for vaccine design.


Assuntos
Anticorpos Neutralizantes/metabolismo , Mapeamento de Epitopos , Epitopos de Linfócito B/metabolismo , Hepacivirus/fisiologia , Hepatite C/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Desenho de Fármacos , Epitopos de Linfócito B/genética , Humanos , Evasão da Resposta Imune , Imunidade Humoral , Racionalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA