Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 50(4): e23, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850942

RESUMO

Most RNA footprinting approaches that require ribonuclease cleavage generate RNA fragments bearing a phosphate or cyclic phosphate group at their 3' end. Unfortunately, current library preparation protocols rely only on a 3' hydroxyl group for adaptor ligation or poly-A tailing. Here, we developed circAID-p-seq, a PCR-free library preparation for selective 3' phospho-RNA sequencing. As a proof of concept, we applied circAID-p-seq to ribosome profiling, which is based on sequencing of RNA fragments protected by ribosomes after endonuclease digestion. CircAID-p-seq, combined with the dedicated computational pipeline circAidMe, facilitates accurate, fast and highly efficient sequencing of phospho-RNA fragments from eukaryotic cells and tissues. We used circAID-p-seq to portray ribosome occupancy in transcripts, providing a versatile and PCR-free strategy to possibly unravel any endogenous 3'-phospho RNA molecules.


Assuntos
RNA , Ribossomos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fosfatos , RNA/genética , Ribossomos/genética , Análise de Sequência de RNA/métodos
2.
Genome Res ; 30(7): 1012-1026, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554781

RESUMO

Large RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA-protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A)+ RNA-protein crosslinking data provide information on the organization of RNA-protein complexes. To evaluate the relative enrichment of cellular RBPs on poly(A)+ RNA, we combine poly(A)+ RNA interactome capture with a whole-cell extract normalization procedure. This approach yields estimates of in vivo RNA-binding activities that identify subunits within multiprotein complexes that directly contact RNA. As validation, we trace RNA interactions of different functional modules of the 3' end processing machinery and reveal additional contacts. Extending our analysis to different mutants of the RNA exosome complex, we explore how substrate channeling through the complex is affected by mutation. Our data highlight the central role of the RNA helicase Mtl1 in regulation of the complex and provide insights into how different components contribute to engagement of the complex with substrate RNA. In addition, we characterize RNA-binding activities of novel RBPs that have been recurrently detected in the RNA interactomes of multiple species. We find that many of these, including cyclophilins and thioredoxins, are substoichiometric RNA interactors in vivo. Because RBPomes show very good overall agreement between species, we propose that the RNA-binding characteristics we observe in fission yeast are likely to apply to related proteins in higher eukaryotes as well.


Assuntos
RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Ciclofilinas/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Mutação , Subunidades Proteicas/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
3.
J Biol Chem ; 290(30): 18817-32, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26032412

RESUMO

Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografia por Raios X , Endossomos/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Neuritos/metabolismo , Neuritos/fisiologia , Ligação Proteica , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
4.
Cell Rep ; 36(10): 109671, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496258

RESUMO

Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.


Assuntos
Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Schizosaccharomyces/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
5.
Methods Enzymol ; 612: 489-504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30502955

RESUMO

The RNA polymerase II carboxyl-terminal domain (CTD) consists of tandem repeats of consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Dynamic posttranslational modifications of the CTD generate a CTD code crucial for the cotranscriptional recruitment of factors that control transcription, chromatin modification, and RNA processing. Analysis of CTD phosphorylation by ChIP (Chromatin ImmunoPrecipitation) coupled with high-throughput DNA sequencing (ChIP-seq) is a powerful tool to investigate the changes in CTD phosphorylation during the transcription cycle. In this chapter, we describe a ChIP-seq protocol to profile the different CTD phospho-marks in fission yeast. Using this protocol, we have found that Tyr1P, Ser2P, and Thr4P signals are highest at gene 3' ends, whereas Ser5P is enriched across the gene bodies.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Imunoprecipitação da Cromatina , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcrição Gênica/genética
6.
Cell Rep ; 25(1): 259-269.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282034

RESUMO

Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.


Assuntos
Fatores de Alongamento de Peptídeos/genética , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/genética , Terminação da Transcrição Genética/fisiologia , Transcrição Gênica/genética
7.
Nat Commun ; 8: 14861, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28367989

RESUMO

Termination of RNA polymerase II (Pol II) transcription is an important step in the transcription cycle, which involves the dislodgement of polymerase from DNA, leading to release of a functional transcript. Recent studies have identified the key players required for this process and showed that a common feature of these proteins is a conserved domain that interacts with the phosphorylated C-terminus of Pol II (CTD-interacting domain, CID). However, the mechanism by which transcription termination is achieved is not understood. Using genome-wide methods, here we show that the fission yeast CID-protein Seb1 is essential for termination of protein-coding and non-coding genes through interaction with S2-phosphorylated Pol II and nascent RNA. Furthermore, we present the crystal structures of the Seb1 CTD- and RNA-binding modules. Unexpectedly, the latter reveals an intertwined two-domain arrangement of a canonical RRM and second domain. These results provide important insights into the mechanism underlying eukaryotic transcription termination.


Assuntos
Sequência Conservada , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Terminação da Transcrição Genética , Sequência de Bases , Sobrevivência Celular , Cristalografia por Raios X , Genes Fúngicos , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Fases de Leitura Aberta/genética , Fosforilação , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA