Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 14(1): 22191, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333184

RESUMO

The ROS1 receptor tyrosine kinase (RTK) possesses the largest extracellular amino-terminal domain (ECD) among the human RTK family, yet the mechanisms regulating its activation are not fully understood. While chimeric ROS1 fusion proteins, resulting from chromosomal rearrangements, are well-known oncogenic drivers, their activation mechanisms also remain underexplored. To elucidate the role of the ROS1 ECD in catalytic regulation, we engineered a series of amino-terminal deletion mutants. Our functional studies compared the full-length ROS1 receptor, the CD74-ROS1 oncogenic fusion, and ECD-deleted ROS1 constructs, identifying the ECD regions that inhibit ROS1 tyrosine kinase activity. Notably, we found that deletion of the ROS1 ECD alone significantly increases constitutive catalytic activation and neoplastic transformation in the absence of an amino-terminal fusion partner, challenging the presumed necessity for a dimerization domain in the activation mechanism of kinase fusions in cancer. Our data suggest that inter-genic deletions resulting in the loss of the ECD may be underappreciated oncogenic drivers in cancer. Furthermore, our studies demonstrate that RNASE7 is not a ligand for the ROS1 receptor as previously reported, confirming that ROS1 remains an orphan receptor. Thus, the discovery of a ROS1 ligand remains an important future priority. These findings highlight the potential for disease-associated somatic aberrations or splice variants that modify the ROS1 ECD to promote constitutive receptor activation, warranting further investigation.


Assuntos
Domínios Proteicos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/química , Animais , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HEK293 , Ativação Enzimática
2.
NPJ Precis Oncol ; 8(1): 175, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117775

RESUMO

The grammar in this abstract is generally correct, but there's a minor issue with sentence structure in one part. Here's a slightly revised version with improved grammar and flow:ROS1 tyrosine kinase inhibitors (TKIs) are highly effective in ROS1-positive non-small cell lung cancer, but resistance remains a challenge. We investigated the activity of various TKIs against wildtype and mutant ROS1, focusing on the emerging L2086F resistance mutation. Using Ba/F3 and NIH3T3 cell models, CRISPR/Cas9-edited isogenic wildtype and mutant patient-derived cell lines, and in vivo tumor growth studies, we compared type I TKIs (crizotinib, entrectinib, taletrectinib, lorlatinib, and repotrectinib) to type II TKIs (cabozantinib and merestinib) and the type I FLT3 inhibitor gilteritinib. The ROS1 L2086F mutant kinase showed resistance to type I TKIs, while type II TKIs retained activity. Gilteritinib inhibited both wildtype and L2086F mutant ROS1 but was ineffective against the G2032R mutation. Structural analyses revealed distinct binding poses for cabozantinib and gilteritinib, explaining their efficacy against L2086F. Clinical cases demonstrated cabozantinib's effectiveness in patients with TKI-resistant, ROS1 L2086F mutant NSCLCs. This study provides the first comprehensive report of ROS1 L2086F in the context of later-generation TKIs, including macrocyclic inhibitors. While cabozantinib effectively inhibits ROS1 L2086F, its multi-kinase inhibitor nature highlights the need for more selective and better-tolerated TKIs to overcome kinase-intrinsic resistance. Gilteritinib may offer an alternative for targeting ROS1 L2086F with distinct off-target toxicities, but further studies are required to fully evaluate its potential in this setting.

3.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293020

RESUMO

Purpose: Despite the robust efficacy of ROS1 tyrosine kinase inhibitors (TKIs) in ROS1-positive non-small cell lung cancer, TKI resistance continues to hamper durability of the therapeutic response. The resistance liabilities of next-generation ROS1 TKI are sparsely characterized. Design: We compared the activity of type I TKIs (crizotinib, entrectinib, taletrectinib, lorlatinib, and repotrectinib) to the type II TKIs (cabozantinib and merestinib), and to the type I FLT3 inhibitor, gilteritinib, in CD74-ROS1 wildtype and F2004C, L2026M, G2032R, or L2086 mutant Ba/F3 cells. The findings from the Ba/F3 cell model were confirmed using NIH3T3 colony formation assays and in vivo tumor growth. CRISPR/Cas9 gene editing was used to generate isogenic wildtype and L2086F mutant TPM3-ROS1 expressing patient-derived cell lines. These lines were used to further evaluate TKI activity using cell viability and immunoblotting methods. Molecular modeling studies enabled the characterization of structural determinants of TKI sensitivity in wildtype and mutant ROS1 kinase domains. We also report clinical cases of ROS1 TKI resistance that were treated with cabozantinib. Results: ROS1 L2086F mutant kinase is resistant to type I TKI including crizotinib, entrectinib, lorlatinib, repotrectinib, taletrectinib, while the type II TKI cabozantinib and merestinib retain activity. Additionally, we found that gilteritinib, a type I FLT3 inhibitor, inhibited wildtype and L2086F mutant ROS1, however ROS1 G2032R solvent front mutation imposed resistance. The specific binding poses adopted by cabozantinib in the DFG-out kinase conformation and gilteritinib in the DFG-in kinase, provide rationale for their activity in the ROS1 mutants. Clinical cases demonstrated response to cabozantinib in tumors developing TKI resistance due to the ROS1 L2086F mutation. Conclusion: Cabozantinib and gilteritinib effectively inhibit ROS1 L2086F. Clinical activity of cabozantinib is confirmed in patients with TKI-resistant, ROS1 L2086F mutant NSCLC. Gilteritinib may offer an alternative with distinct off-target toxicities, however further studies are required. Since cabozantinib and gilteritinib are multi-kinase inhibitors, there is a persistent unmet need for more selective and better-tolerated TKI to overcome ROS1 L2086F kinase-intrinsic resistance. Translational relevance: ROS1 L2086F is an emerging recurrent resistance mutation to type I ROS1 TKIs, including later generation TKIs. Here, we show corroborating preclinical and clinical evidence for the activity of the quinolone-based type II TKI, cabozantinib, in ROS1 L2086F resistance setting. In addition, we show activity of the pyrazine carboxamide-based type I TKI, gilteritinib, in ROS1 L2086F resistance, suggesting that gilteritinib could be another option for ROS1 L2086F TKI-resistant patients. This study represents the first comprehensive report of ROS1 L2086F in the context of later-generation TKIs, including the macrocyclic inhibitors.

4.
EMBO Mol Med ; 15(10): e17367, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587872

RESUMO

ROS1 is the largest receptor tyrosine kinase in the human genome. Rearrangements of the ROS1 gene result in oncogenic ROS1 kinase fusion proteins that are currently the only validated biomarkers for targeted therapy with ROS1 TKIs in patients. While numerous somatic missense mutations in ROS1 exist in the cancer genome, their impact on catalytic activity and pathogenic potential is unknown. We interrogated the AACR Genie database and identified 34 missense mutations in the ROS1 tyrosine kinase domain for further analysis. Our experiments revealed that these mutations have varying effects on ROS1 kinase function, ranging from complete loss to significantly increased catalytic activity. Notably, Asn and Gly substitutions at Asp2113 in the ROS1 kinase domain were found to be TKI-sensitive oncogenic variants in cell-based model systems. In vivo experiments showed that ROS1 D2113N induced tumor formation that was sensitive to crizotinib and lorlatinib, FDA-approved ROS1-TKIs. Collectively, these findings highlight the tumorigenic potential of specific point mutations within the ROS1 kinase domain and their potential as therapeutic targets with FDA-approved ROS1-TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , /uso terapêutico
5.
Cancer Discov ; 13(3): 598-615, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511802

RESUMO

SIGNIFICANCE: The combined preclinical features of NVL-520 that include potent targeting of ROS1 and diverse ROS1 resistance mutations, high selectivity for ROS1 G2032R over TRK, and brain penetration mark the development of a distinct ROS1 TKI with the potential to surpass the limitations of earlier-generation TKIs for ROS1 fusion-positive patients. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Tirosina Quinases/genética , Aminopiridinas , Lactamas Macrocíclicas/farmacologia , Lactamas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Pirazóis , Neoplasias Pulmonares/genética , Encéfalo , Mutação
6.
Mol Cancer Ther ; 21(2): 336-346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907086

RESUMO

ROS1 fusion proteins resulting from chromosomal rearrangements of the ROS1 gene are targetable oncogenic drivers in diverse cancers. Acquired resistance to targeted inhibitors curtails clinical benefit and response durability. Entrectinib, a NTRK/ROS1/ALK targeted tyrosine kinase inhibitor (TKI), was approved for the treatment of ROS1 fusion-positive non-small cell lung cancer (NSCLC) in 2019. In addition, lorlatinib and repotrectinib are actively being explored in the setting of treatment-naïve or crizotinib-resistant ROS1 fusion driven NSCLC. Here, we employed an unbiased forward mutagenesis screen in Ba/F3 CD74-ROS1 and EZR-ROS1 cells to identify resistance liabilities to entrectinib, lorlatinib, and repotrectinib. ROS1F2004C emerged as a recurrent entrectinib resistant mutation and ROS1G2032R was discovered in entrectinib and lorlatinib-resistant clones. Cell-based and modeling data show that entrectinib is a dual type I/II mode inhibitor, and thus liable to both types of resistant mutations. Comprehensive profiling of all clinically relevant kinase domain mutations showed that ROS1L2086F is broadly resistant to all type I inhibitors, but remains sensitive to type II inhibitors. ROS1F2004C/I/V are resistant to type I inhibitors, entrectinib and crizotinib, and type II inhibitor, cabozantinib, but retain sensitivity to the type I macrocyclic inhibitors. Development of new, more selective type II ROS1 inhibitor(s) or potentially cycling type I and type II inhibitors may be one way to expand durability of ROS1-targeted agents.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transfecção
7.
Nat Rev Clin Oncol ; 18(1): 35-55, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32760015

RESUMO

The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.


Assuntos
Neoplasias/diagnóstico , Neoplasias/terapia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Tirosina Quinases/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Artigo em Inglês | MEDLINE | ID: mdl-34429303

RESUMO

Chromosomal rearrangements of the NTRK genes generate kinase fusions that are targetable oncogenic drivers in diverse adult and pediatric malignancies. Despite robust clinical response to targeted NTRK inhibition, the emergence of therapeutic resistance poses a formidable clinical challenge. Here we report the characterization of an ETV6-NTRK3 fusion-driven pediatric glioma that progressed through NTRK-targeted treatments with entrectinib and selitrectinib. Genetic analysis of multifocal recurrent/resistant lesions identified a previously uncharacterized NTRK3 p.G623A and a known p.G623E resistance mutation, in addition to other alterations of potential pathogenic impact. Functional studies using heterologous reconstitution model systems and patient-derived tumor cell lines establish that NTRK3G623A and NTRK3G623E mutated kinases exhibit reduced sensitivity to entrectinib and selitrectinib, as well as other NTRK inhibitors tested herein. In summary, this genetic analysis of multifocal recurrent/resistant glioma driven by ETV6-NTRK3 fusion captured a cross section of resistance-associated alterations that, based on in vitro analysis, likely contributed to resistance to targeted therapy and disease progression.


Assuntos
Glioma , Proteínas de Fusão Oncogênica , Criança , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Recidiva Local de Neoplasia , Proteínas de Fusão Oncogênica/genética , Oncogenes , Receptores Proteína Tirosina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA