Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 213: 113631, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35714685

RESUMO

Blockchain-integrated waste management and circular economy are emergent concepts that target minimising waste generation and fluctuations of resource commodity. Blockchain can support a circular economy and green principles by enabling information transparency, reliability and automation. Redesigning plastics by molecular tagging is the way forward to ensure synthetic plastics are kept in an infinite loop and support closed-loop recycling. The involvement of major corporations in product development and blockchain-integrated closed-loop recycling has resulted in several successful green chemical approaches toward circular plastic economy projects. Government policies and legislations are progressively supporting plastic redesigning for improving the plastic circular economy. Nevertheless, a systematic approach is required in addressing blockchain technology and plastic redesigning to effectively leverage circular economy initiatives.


Assuntos
Blockchain , Gerenciamento de Resíduos , Plásticos , Reciclagem , Reprodutibilidade dos Testes
2.
Environ Pollut ; 271: 116311, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383425

RESUMO

Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.


Assuntos
Materiais Biocompatíveis , Gerenciamento de Resíduos , Biocombustíveis , Fermentação , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA