Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antiviral Res ; 230: 105976, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39117283

RESUMO

Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.


Assuntos
Antivirais , Biossíntese de Proteínas , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Humanos , Chlorocebus aethiops , Animais , Biossíntese de Proteínas/efeitos dos fármacos , Células Vero , Tratamento Farmacológico da COVID-19 , Benzofuranos/farmacologia , Benzofuranos/síntese química , Benzofuranos/química , COVID-19/virologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/genética , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/metabolismo
2.
Viruses ; 15(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36680083

RESUMO

Viral pathogens with the potential to cause widespread disruption to human health and society continue to emerge or re-emerge around the world. Research on such viruses often involves high biocontainment laboratories (BSL3 or BSL4), but the development of diagnostics, vaccines and therapeutics often uses assays that are best performed at lower biocontainment. Reliable inactivation is necessary to allow removal of materials to these spaces and to ensure personnel safety. Here, we validate the use of gamma irradiation to inactivate culture supernatants and pellets of cells infected with a representative member of the Filovirus and Coronavirus families. We show that supernatants and cell pellets containing SARS-CoV-2 are readily inactivated with 1.9 MRad, while Ebola virus requires higher doses of 2.6 MRad for supernatants and 3.8 MRad for pellets. While these doses of radiation inactivate viruses, proinflammatory cytokines that are common markers of virus infection are still detected with low losses. The doses required for virus inactivation of supernatants are in line with previously reported values, but the inactivation of cell pellets has not been previously reported and enables new approaches for analysis of protein-based host responses to infection.


Assuntos
COVID-19 , Ebolavirus , Doença pelo Vírus Ebola , Vírus , Humanos , SARS-CoV-2 , Inativação de Vírus/efeitos da radiação , Técnicas de Cultura de Células
3.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33907750

RESUMO

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.

4.
iScience ; 25(9): 104925, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35992305

RESUMO

Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.

5.
Microorganisms ; 9(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445537

RESUMO

Ongoing efforts to develop effective therapies against filoviruses rely, to different extents, on quantifying the amount of viable virus in samples by plaque, TCID50, and focus assays. Unfortunately, these techniques have inherent variance, and laboratory-specific preferences make direct comparison of data difficult. Additionally, human errors such as operator errors and subjective bias can further compound the differences in outcomes. To overcome these biases, we developed a computer-based automated image-processing method for a focus assay based on the open-source CellProfiler software platform, which enables high-throughput screening of many treatment samples at one time. We compared virus titers calculated using this platform to plaque and TCID50 assays using common stocks of virus for 3 major Filovirus species, Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus with each assay performed by multiple operators on multiple days. We show that plaque assays give comparable findings that differ by less than 3-fold. Focus-forming unit (FFU) and TCID50 assays differ by 10-fold or less from the plaque assays due a higher (FFU) and lower (TCID50) sensitivity. However, reproducibility and accuracy of each assay differs significantly with Neutral Red Agarose Overlay plaque assays and TCID50 with the lowest reproducibility due to subjective analysis and operator error. Both crystal violet methylcellulose overlay plaque assay and focus assays perform best for accuracy and the focus assay performs best for speed and throughput.

6.
Eur J Med Chem ; 226: 113862, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583312

RESUMO

We report here the synthesis, purification, and characterization of mono- and di-fatty acyl conjugates of remdesivir (RDV) and their in vitro antiviral activity against SAR-CoV-2, an Ebola virus transcription- and replication-competent virus-like particle (trVLP) system, and infectious Ebola virus. The most potent monofatty acyl conjugate was 4b, containing a 4-oxatetradecanolyl at the 3' position. Monofatty acyl conjugates, 3'-O-tetradecanoyl (4a) (IC50(VeroE6) = 2.3 µM; IC50(Calu3) = 0.24 µM), 3'-O-4-oxatetradodecanoyl (4b) (IC50(VeroE6) = 2.0 µM; IC50(Calu3) = 0.18 µM), and 3'-O-(12-ethylthiododecanoyl) (4e) (IC50(VeroE6) = 2.4 µM; IC50(Calu3) = 0.25 µM) derivatives exhibited less activity than RDV (IC50(VeroE6) = 0.85 µM; IC50(Calu3) = 0.06 µM) in both VeroE6 and Calu3 cells. Difatty acylation led to a significant reduction in the antiviral activity of RDV (as shown in conjugates 5a and 5b) against SARS-CoV-2 when compared with monofatty acylation (3a-e and 4a-e). About 77.9% of 4c remained intact after 4 h incubation with human plasma while only 47% of parent RDV was observed at the 2 h time point. The results clearly indicate the effectiveness of fatty acylation to improve the half-life of RDV. The antiviral activities of a number of monofatty acyl conjugates of RDV, such as 3b, 3e, and 4b, were comparable with RDV against the Ebola trVLP system. Meanwhile, the corresponding physical mixtures of RDV and fatty acids 6a and 6b showed 1.6 to 2.2 times less antiviral activity than the corresponding conjugates, 4a and 4c, respectively, against SARS-CoV-2 in VeroE6 cells. A significant reduction in viral RNA synthesis was observed for selected compounds 3a and 4b consistent with the IC50 results. These studies indicate the potential of these compounds as long-acting antiviral agents or prodrugs of RDV.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/síntese química , Antivirais/farmacologia , COVID-19/virologia , Ebolavirus/efeitos dos fármacos , Ácidos Graxos/química , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/síntese química , Alanina/química , Alanina/farmacologia , Antivirais/química , Humanos , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA