Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Nature ; 550(7675): 255-259, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28953886

RESUMO

Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the 'emergency circuit' that shapes feeding responses to stressful conditions. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.


Assuntos
Peso Corporal/fisiologia , Tronco Encefálico/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Homeostase , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/fisiologia , Estresse Psicológico
3.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393969

RESUMO

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Assuntos
Antígenos CD , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Glicoproteínas de Membrana , Células Mieloides , Receptores Imunológicos , Microambiente Tumoral , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
4.
Cell Rep ; 39(9): 110872, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649369

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and ß-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce ß-cell regeneration in humans. Here, we discover the ß-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of ß-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of ß-cell mass. We demonstrate that both ß-cell proliferation and α- to ß-cell transdifferentiation contribute to anti-GcgR-induced ß-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from ß-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced ß-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases ß-cell mass in a mouse model of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagon , Hiperglicemia , Células Secretoras de Insulina , Animais , Modelos Animais de Doenças , Glucagon , Hiperglicemia/tratamento farmacológico , Camundongos , Receptores de Glucagon
5.
Cancer Immunol Res ; 9(11): 1283-1297, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34426457

RESUMO

Suppressive myeloid cells inhibit antitumor immunity by preventing T-cell responses. Immunoglobulin-like transcript 3 (ILT3; also known as LILRB4) is highly expressed on tumor-associated myeloid cells and promotes their suppressive phenotype. However, the ligand that engages ILT3 within the tumor microenvironment and renders tumor-associated myeloid cells suppressive is unknown. Using a screening approach, we identified fibronectin as a functional ligand for ILT3. The interaction of fibronectin with ILT3 polarized myeloid cells toward a suppressive state, and these effects were reversed with an ILT3-specific antibody that blocked the interaction of ILT3 with fibronectin. Furthermore, ex vivo treatment of human tumor explants with anti-ILT3 reprogrammed tumor-associated myeloid cells toward a stimulatory phenotype. Thus, the ILT3-fibronectin interaction represents a "stromal checkpoint" through which the extracellular matrix actively suppresses myeloid cells. By blocking this interaction, tumor-associated myeloid cells may acquire a stimulatory phenotype, potentially resulting in increased antitumor T-cell responses.


Assuntos
Fibronectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos
6.
Nat Med ; 26(8): 1264-1270, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661391

RESUMO

Cancer cachexia is a highly prevalent condition associated with poor quality of life and reduced survival1. Tumor-induced perturbations in the endocrine, immune and nervous systems drive anorexia and catabolic changes in adipose tissue and skeletal muscle, hallmarks of cancer cachexia2-4. However, the molecular mechanisms driving cachexia remain poorly defined, and there are currently no approved drugs for the condition. Elevation in circulating growth differentiation factor 15 (GDF15) correlates with cachexia and reduced survival in patients with cancer5-8, and a GDNF family receptor alpha like (GFRAL)-Ret proto-oncogene (RET) signaling complex in brainstem neurons that mediates GDF15-induced weight loss in mice has recently been described9-12. Here we report a therapeutic antagonistic monoclonal antibody, 3P10, that targets GFRAL and inhibits RET signaling by preventing the GDF15-driven interaction of RET with GFRAL on the cell surface. Treatment with 3P10 reverses excessive lipid oxidation in tumor-bearing mice and prevents cancer cachexia, even under calorie-restricted conditions. Mechanistically, activation of the GFRAL-RET pathway induces expression of genes involved in lipid metabolism in adipose tissues, and both peripheral chemical sympathectomy and loss of adipose triglyceride lipase protect mice from GDF15-induced weight loss. These data uncover a peripheral sympathetic axis by which GDF15 elicits a lipolytic response in adipose tissue independently of anorexia, leading to reduced adipose and muscle mass and function in tumor-bearing mice.


Assuntos
Caquexia/tratamento farmacológico , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Complexos Multiproteicos/ultraestrutura , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-ret/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Anticorpos Monoclonais , Caquexia/complicações , Caquexia/genética , Caquexia/imunologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/ultraestrutura , Fator 15 de Diferenciação de Crescimento/ultraestrutura , Xenoenxertos , Humanos , Peroxidação de Lipídeos , Camundongos , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Neoplasias/complicações , Neoplasias/genética , Neoplasias/imunologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/ultraestrutura , Transdução de Sinais , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA